irf.varlse | R Documentation |
Computes responses to impulses or orthogonal impulses
## S3 method for class 'varlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
## S3 method for class 'vharlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
## S3 method for class 'bvharirf'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
irf(object, lag_max, orthogonal, impulse_var, response_var, ...)
is.bvharirf(x)
## S3 method for class 'bvharirf'
knit_print(x, ...)
object |
Model object |
lag_max |
Maximum lag to investigate the impulse responses (By default, |
orthogonal |
Orthogonal impulses ( |
impulse_var |
Impulse variables character vector. If not specified, use every variable. |
response_var |
Response variables character vector. If not specified, use every variable. |
... |
not used |
x |
Any object |
digits |
digit option to print |
bvharirf
class
If orthogonal = FALSE
, the function gives W_j
VMA representation of the process such that
Y_t = \sum_{j = 0}^\infty W_j \epsilon_{t - j}
If orthogonal = TRUE
, it gives orthogonalized VMA representation
\Theta
. Based on variance decomposition (Cholesky decomposition)
\Sigma = P P^T
where P
is lower triangular matrix,
impulse response analysis if performed under MA representation
y_t = \sum_{i = 0}^\infty \Theta_i v_{t - i}
Here,
\Theta_i = W_i P
and v_t = P^{-1} \epsilon_t
are orthogonal.
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
VARtoVMA()
VHARtoVMA()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.