choose_bvar | R Documentation |
Instead of these functions, you can use choose_bayes()
.
choose_bvar(
bayes_spec = set_bvar(),
lower = 0.01,
upper = 10,
...,
eps = 1e-04,
y,
p,
include_mean = TRUE,
parallel = list()
)
choose_bvhar(
bayes_spec = set_bvhar(),
lower = 0.01,
upper = 10,
...,
eps = 1e-04,
y,
har = c(5, 22),
include_mean = TRUE,
parallel = list()
)
## S3 method for class 'bvharemp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharemp(x)
## S3 method for class 'bvharemp'
knit_print(x, ...)
bayes_spec |
Initial Bayes model specification. |
lower |
|
upper |
|
... |
not used |
eps |
Hyperparameter |
y |
Time series data |
p |
BVAR lag |
include_mean |
Add constant term (Default: |
parallel |
List the same argument of |
har |
Numeric vector for weekly and monthly order. By default, |
x |
Any object |
digits |
digit option to print |
Empirical Bayes method maximizes marginal likelihood and selects the set of hyperparameters.
These functions implement L-BFGS-B
method of stats::optim()
to find the maximum of marginal likelihood.
If you want to set lower
and upper
option more carefully,
deal with them like as in stats::optim()
in order of set_bvar()
, set_bvhar()
, or set_weight_bvhar()
's argument (except eps
).
In other words, just arrange them in a vector.
bvharemp
class is a list that has
stats::optim()
or optimParallel::optimParallel()
chosen bvharspec
set
Bayesian model fit result with chosen specification
Many components of stats::optim()
or optimParallel::optimParallel()
Corresponding bvharspec
Chosen Bayesian model
Marginal likelihood of the final model
Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on scientific computing, 16(5), 1190-1208.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.