bvhar-package | R Documentation |
Tools to model and forecast multivariate time series including Bayesian Vector heterogeneous autoregressive (VHAR) model by Kim & Baek (2023) (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00949655.2023.2281644")}). 'bvhar' can model Vector Autoregressive (VAR), VHAR, Bayesian VAR (BVAR), and Bayesian VHAR (BVHAR) models.
The bvhar package provides function to analyze and forecast multivariate time series data via vector autoregressive modeling. Here, vector autoregressive modelling includes:
Vector autoregressive (VAR) model: var_lm()
Vector heterogeneous autoregressive (VHAR) model: vhar_lm()
Bayesian VAR (BVAR) model: var_bayes()
Bayesian VHAR (BVHAR) model: vhar_bayes()
Maintainer: Young Geun Kim ygeunkimstat@gmail.com (ORCID) [copyright holder]
Other contributors:
Changryong Baek [contributor]
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
Kim, Y. G., and Baek, C. (n.d.). Working paper.
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.