View source: R/bvar-minnesota.R
bvar_minnesota | R Documentation |
This function fits BVAR(p) with Minnesota prior.
bvar_minnesota(
y,
p = 1,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvar(),
scale_variance = 0.05,
include_mean = TRUE,
parallel = list(),
verbose = FALSE,
num_thread = 1
)
## S3 method for class 'bvarmn'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarhm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarmn'
logLik(object, ...)
## S3 method for class 'bvarmn'
AIC(object, ...)
## S3 method for class 'bvarmn'
BIC(object, ...)
is.bvarmn(x)
## S3 method for class 'bvarmn'
knit_print(x, ...)
## S3 method for class 'bvarhm'
knit_print(x, ...)
y |
Time series data of which columns indicate the variables |
p |
VAR lag (Default: 1) |
num_chains |
Number of MCMC chains |
num_iter |
MCMC iteration number |
num_burn |
Number of burn-in (warm-up). Half of the iteration is the default choice. |
thinning |
Thinning every thinning-th iteration |
bayes_spec |
A BVAR model specification by |
scale_variance |
Proposal distribution scaling constant to adjust an acceptance rate |
include_mean |
Add constant term (Default: |
parallel |
List the same argument of |
verbose |
Print the progress bar in the console. By default, |
num_thread |
Number of threads |
x |
Any object |
digits |
digit option to print |
... |
not used |
object |
A |
Minnesota prior gives prior to parameters A
(VAR matrices) and \Sigma_e
(residual covariance).
A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)
\Sigma_e \sim IW(S_0, \alpha_0)
(MN: matrix normal, IW: inverse-wishart)
bvar_minnesota()
returns an object bvarmn
class.
It is a list with the following components:
Posterior Mean
Fitted values
Residuals
Posterior mean matrix of Matrix Normal distribution
Posterior precision matrix of Matrix Normal distribution
Posterior scale matrix of posterior inverse-Wishart distribution
Posterior shape of inverse-Wishart distribution (alpha_0
- obs + 2). \alpha_0
: nrow(Dummy observation) - k
Numer of Coefficients: mp + 1 or mp
Dimension of the time series
Sample size used when training = totobs
- p
Prior mean matrix of Matrix Normal distribution: A_0
Prior precision matrix of Matrix Normal distribution: \Omega_0^{-1}
Prior scale matrix of inverse-Wishart distribution: S_0
Prior shape of inverse-Wishart distribution: \alpha_0
Y_0
X_0
Lag of VAR
Total number of the observation
include constant term (const
) or not (none
)
Raw input (matrix
)
Matched call
Process string in the bayes_spec
: BVAR_Minnesota
Model specification (bvharspec
)
It is also normaliw
and bvharmod
class.
BaĆbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
KADIYALA, K.R. and KARLSSON, S. (1997), NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS. J. Appl. Econ., 12: 99-132.
Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791-897.
Sims, C. A., & Zha, T. (1998). Bayesian Methods for Dynamic Multivariate Models. International Economic Review, 39(4), 949-968.
set_bvar()
to specify the hyperparameters of Minnesota prior.
summary.normaliw()
to summarize BVAR model
# Perform the function using etf_vix dataset
fit <- bvar_minnesota(y = etf_vix[,1:3], p = 2)
class(fit)
# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.