| bvar_flat | R Documentation |
This function fits BVAR(p) with flat prior.
bvar_flat(
y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvar_flat(),
include_mean = TRUE,
verbose = FALSE,
num_thread = 1
)
## S3 method for class 'bvarflat'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarflat'
logLik(object, ...)
## S3 method for class 'bvarflat'
AIC(object, ...)
## S3 method for class 'bvarflat'
BIC(object, ...)
is.bvarflat(x)
## S3 method for class 'bvarflat'
knit_print(x, ...)
y |
Time series data of which columns indicate the variables |
p |
VAR lag |
num_chains |
Number of MCMC chains |
num_iter |
MCMC iteration number |
num_burn |
Number of burn-in (warm-up). Half of the iteration is the default choice. |
thinning |
Thinning every thinning-th iteration |
bayes_spec |
A BVAR model specification by |
include_mean |
Add constant term (Default: |
verbose |
Print the progress bar in the console. By default, |
num_thread |
Number of threads |
x |
Any object |
digits |
digit option to print |
... |
not used |
object |
A |
Ghosh et al. (2018) gives flat prior for residual matrix in BVAR.
Under this setting, there are many models such as hierarchical or non-hierarchical. This function chooses the most simple non-hierarchical matrix normal prior in Section 3.1.
A \mid \Sigma_e \sim MN(0, U^{-1}, \Sigma_e)
where U: precision matrix (MN: matrix normal).
p (\Sigma_e) \propto 1
bvar_flat() returns an object bvarflat class.
It is a list with the following components:
Posterior Mean matrix of Matrix Normal distribution
Fitted values
Residuals
Posterior precision matrix of Matrix Normal distribution
Posterior scale matrix of posterior inverse-wishart distribution
Posterior shape of inverse-wishart distribution
Numer of Coefficients: mp + 1 or mp
Lag of VAR
Dimension of the time series
Sample size used when training = totobs - p
Total number of the observation
Process string in the bayes_spec: BVAR_Flat
Model specification (bvharspec)
include constant term (const) or not (none)
Matched call
Prior mean matrix of Matrix Normal distribution: zero matrix
Prior precision matrix of Matrix Normal distribution: U^{-1}
Y_0
X_0
Raw input (matrix)
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
set_bvar_flat() to specify the hyperparameters of BVAR flat prior.
coef.bvarflat(), residuals.bvarflat(), and fitted.bvarflat()
predict.bvarflat() to forecast the BVHAR process
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.