Nothing
#' Monte Carlo Sampling Distribution
#' for the Elements of the Matrix of Lagged Coefficients
#' Over a Specific Time Interval
#' or a Range of Time Intervals
#'
#' This function generates a Monte Carlo method
#' sampling distribution
#' for the elements of the matrix of lagged coefficients
#' \eqn{\boldsymbol{\beta}}
#' over a specific time interval \eqn{\Delta t}
#' or a range of time intervals
#' using the first-order stochastic differential equation model
#' drift matrix \eqn{\boldsymbol{\Phi}}.
#'
#' @details See [Total()].
#'
#' ## Monte Carlo Method
#' Let \eqn{\boldsymbol{\theta}} be
#' \eqn{\mathrm{vec} \left( \boldsymbol{\Phi} \right)},
#' that is,
#' the elements of the \eqn{\boldsymbol{\Phi}} matrix
#' in vector form sorted column-wise.
#' Let \eqn{\hat{\boldsymbol{\theta}}} be
#' \eqn{\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)}.
#' Based on the asymptotic properties of maximum likelihood estimators,
#' we can assume that estimators are normally distributed
#' around the population parameters.
#' \deqn{
#' \hat{\boldsymbol{\theta}}
#' \sim
#' \mathcal{N}
#' \left(
#' \boldsymbol{\theta},
#' \mathbb{V} \left( \hat{\boldsymbol{\theta}} \right)
#' \right)
#' }
#' Using this distributional assumption,
#' a sampling distribution of \eqn{\hat{\boldsymbol{\theta}}}
#' which we refer to as \eqn{\hat{\boldsymbol{\theta}}^{\ast}}
#' can be generated by replacing the population parameters
#' with sample estimates,
#' that is,
#' \deqn{
#' \hat{\boldsymbol{\theta}}^{\ast}
#' \sim
#' \mathcal{N}
#' \left(
#' \hat{\boldsymbol{\theta}},
#' \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
#' \right) .
#' }
#' Let
#' \eqn{\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)}
#' be a parameter that is a function of the estimated parameters.
#' A sampling distribution of
#' \eqn{\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)} ,
#' which we refer to as
#' \eqn{\mathbf{g} \left( \hat{\boldsymbol{\theta}}^{\ast} \right)} ,
#' can be generated by using the simulated estimates
#' to calculate
#' \eqn{\mathbf{g}}.
#' The standard deviations of the simulated estimates
#' are the standard errors.
#' Percentiles corresponding to
#' \eqn{100 \left( 1 - \alpha \right) \%}
#' are the confidence intervals.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @inheritParams Indirect
#' @inheritParams MCPhi
#' @inherit Indirect references
#'
#' @return Returns an object
#' of class `ctmedmc` which is a list with the following elements:
#' \describe{
#' \item{call}{Function call.}
#' \item{args}{Function arguments.}
#' \item{fun}{Function used ("MCBeta").}
#' \item{output}{A list the length of which is equal to
#' the length of `delta_t`.}
#' }
#' Each element in the `output` list has the following elements:
#' \describe{
#' \item{est}{A vector of total, direct, and indirect effects.}
#' \item{thetahatstar}{A matrix of Monte Carlo
#' total, direct, and indirect effects.}
#' }
#'
#' @examples
#' set.seed(42)
#' phi <- matrix(
#' data = c(
#' -0.357, 0.771, -0.450,
#' 0.0, -0.511, 0.729,
#' 0, 0, -0.693
#' ),
#' nrow = 3
#' )
#' colnames(phi) <- rownames(phi) <- c("x", "m", "y")
#' vcov_phi_vec <- matrix(
#' data = c(
#' 0.002704274, -0.001475275, 0.000949122,
#' -0.001619422, 0.000885122, -0.000569404,
#' 0.00085493, -0.000465824, 0.000297815,
#' -0.001475275, 0.004428442, -0.002642303,
#' 0.000980573, -0.00271817, 0.001618805,
#' -0.000586921, 0.001478421, -0.000871547,
#' 0.000949122, -0.002642303, 0.006402668,
#' -0.000697798, 0.001813471, -0.004043138,
#' 0.000463086, -0.001120949, 0.002271711,
#' -0.001619422, 0.000980573, -0.000697798,
#' 0.002079286, -0.001152501, 0.000753,
#' -0.001528701, 0.000820587, -0.000517524,
#' 0.000885122, -0.00271817, 0.001813471,
#' -0.001152501, 0.00342605, -0.002075005,
#' 0.000899165, -0.002532849, 0.001475579,
#' -0.000569404, 0.001618805, -0.004043138,
#' 0.000753, -0.002075005, 0.004984032,
#' -0.000622255, 0.001634917, -0.003705661,
#' 0.00085493, -0.000586921, 0.000463086,
#' -0.001528701, 0.000899165, -0.000622255,
#' 0.002060076, -0.001096684, 0.000686386,
#' -0.000465824, 0.001478421, -0.001120949,
#' 0.000820587, -0.002532849, 0.001634917,
#' -0.001096684, 0.003328692, -0.001926088,
#' 0.000297815, -0.000871547, 0.002271711,
#' -0.000517524, 0.001475579, -0.003705661,
#' 0.000686386, -0.001926088, 0.004726235
#' ),
#' nrow = 9
#' )
#'
#' # Specific time interval ----------------------------------------------------
#' MCBeta(
#' phi = phi,
#' vcov_phi_vec = vcov_phi_vec,
#' delta_t = 1,
#' R = 100L # use a large value for R in actual research
#' )
#'
#' # Range of time intervals ---------------------------------------------------
#' mc <- MCBeta(
#' phi = phi,
#' vcov_phi_vec = vcov_phi_vec,
#' delta_t = 1:5,
#' R = 100L # use a large value for R in actual research
#' )
#' plot(mc)
#'
#' # Methods -------------------------------------------------------------------
#' # MCBeta has a number of methods including
#' # print, summary, confint, and plot
#' print(mc)
#' summary(mc)
#' confint(mc, level = 0.95)
#' plot(mc)
#'
#' @family Continuous Time Mediation Functions
#' @keywords cTMed beta mc
#' @export
MCBeta <- function(phi,
vcov_phi_vec,
delta_t,
R,
test_phi = TRUE,
ncores = NULL,
seed = NULL) {
idx <- rownames(phi)
stopifnot(
idx == colnames(phi)
)
args <- list(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = delta_t,
R = R,
test_phi = test_phi,
ncores = ncores,
seed = seed,
method = "mc",
network = FALSE
)
delta_t <- sort(
ifelse(
test = delta_t <= 0,
yes = .Machine$double.xmin,
no = delta_t
)
)
output <- .MCBeta(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = delta_t,
R = R,
test_phi = test_phi,
ncores = ncores,
seed = seed
)
names(output) <- delta_t
out <- list(
call = match.call(),
args = args,
fun = "MCBeta",
output = output
)
class(out) <- c(
"ctmedmc",
class(out)
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.