Nothing
#' Total, Direct, and Indirect Effects of X on Y
#' Through M
#' Over a Specific Time Interval
#' or a Range of Time Intervals
#'
#' This function computes the total, direct, and indirect effects
#' of the independent variable \eqn{X}
#' on the dependent variable \eqn{Y}
#' through mediator variables \eqn{\mathbf{m}}
#' over a specific time interval \eqn{\Delta t}
#' or a range of time intervals
#' using the first-order stochastic differential equation model's
#' drift matrix \eqn{\boldsymbol{\Phi}}.
#'
#' @details See [Total()],
#' [Direct()], and
#' [Indirect()] for more details.
#'
#' ## Linear Stochastic Differential Equation Model
#'
#' The measurement model is given by
#' \deqn{
#' \mathbf{y}_{i, t}
#' =
#' \boldsymbol{\nu}
#' +
#' \boldsymbol{\Lambda}
#' \boldsymbol{\eta}_{i, t}
#' +
#' \boldsymbol{\varepsilon}_{i, t},
#' \quad
#' \mathrm{with}
#' \quad
#' \boldsymbol{\varepsilon}_{i, t}
#' \sim
#' \mathcal{N}
#' \left(
#' \mathbf{0},
#' \boldsymbol{\Theta}
#' \right)
#' }
#' where
#' \eqn{\mathbf{y}_{i, t}},
#' \eqn{\boldsymbol{\eta}_{i, t}},
#' and
#' \eqn{\boldsymbol{\varepsilon}_{i, t}}
#' are random variables
#' and
#' \eqn{\boldsymbol{\nu}},
#' \eqn{\boldsymbol{\Lambda}},
#' and
#' \eqn{\boldsymbol{\Theta}}
#' are model parameters.
#' \eqn{\mathbf{y}_{i, t}}
#' represents a vector of observed random variables,
#' \eqn{\boldsymbol{\eta}_{i, t}}
#' a vector of latent random variables,
#' and
#' \eqn{\boldsymbol{\varepsilon}_{i, t}}
#' a vector of random measurement errors,
#' at time \eqn{t} and individual \eqn{i}.
#' \eqn{\boldsymbol{\nu}}
#' denotes a vector of intercepts,
#' \eqn{\boldsymbol{\Lambda}}
#' a matrix of factor loadings,
#' and
#' \eqn{\boldsymbol{\Theta}}
#' the covariance matrix of
#' \eqn{\boldsymbol{\varepsilon}}.
#'
#' An alternative representation of the measurement error
#' is given by
#' \deqn{
#' \boldsymbol{\varepsilon}_{i, t}
#' =
#' \boldsymbol{\Theta}^{\frac{1}{2}}
#' \mathbf{z}_{i, t},
#' \quad
#' \mathrm{with}
#' \quad
#' \mathbf{z}_{i, t}
#' \sim
#' \mathcal{N}
#' \left(
#' \mathbf{0},
#' \mathbf{I}
#' \right)
#' }
#' where
#' \eqn{\mathbf{z}_{i, t}} is a vector of
#' independent standard normal random variables and
#' \eqn{
#' \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
#' \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
#' =
#' \boldsymbol{\Theta} .
#' }
#'
#' The dynamic structure is given by
#' \deqn{
#' \mathrm{d} \boldsymbol{\eta}_{i, t}
#' =
#' \left(
#' \boldsymbol{\iota}
#' +
#' \boldsymbol{\Phi}
#' \boldsymbol{\eta}_{i, t}
#' \right)
#' \mathrm{d}t
#' +
#' \boldsymbol{\Sigma}^{\frac{1}{2}}
#' \mathrm{d}
#' \mathbf{W}_{i, t}
#' }
#' where
#' \eqn{\boldsymbol{\iota}}
#' is a term which is unobserved and constant over time,
#' \eqn{\boldsymbol{\Phi}}
#' is the drift matrix
#' which represents the rate of change of the solution
#' in the absence of any random fluctuations,
#' \eqn{\boldsymbol{\Sigma}}
#' is the matrix of volatility
#' or randomness in the process, and
#' \eqn{\mathrm{d}\boldsymbol{W}}
#' is a Wiener process or Brownian motion,
#' which represents random fluctuations.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @inheritParams Indirect
#' @inherit Indirect references
#' @param delta_t Vector of positive numbers.
#' Time interval
#' (\eqn{\Delta t}).
#'
#' @return Returns an object
#' of class `ctmedmed` which is a list with the following elements:
#' \describe{
#' \item{call}{Function call.}
#' \item{args}{Function arguments.}
#' \item{fun}{Function used ("Med").}
#' \item{output}{A matrix of total, direct, and indirect effects.}
#' }
#'
#' @examples
#' phi <- matrix(
#' data = c(
#' -0.357, 0.771, -0.450,
#' 0.0, -0.511, 0.729,
#' 0, 0, -0.693
#' ),
#' nrow = 3
#' )
#' colnames(phi) <- rownames(phi) <- c("x", "m", "y")
#'
#' # Specific time interval ----------------------------------------------------
#' Med(
#' phi = phi,
#' delta_t = 1,
#' from = "x",
#' to = "y",
#' med = "m"
#' )
#'
#' # Range of time intervals ---------------------------------------------------
#' med <- Med(
#' phi = phi,
#' delta_t = 1:30,
#' from = "x",
#' to = "y",
#' med = "m"
#' )
#' plot(med)
#'
#' # Methods -------------------------------------------------------------------
#' # Med has a number of methods including
#' # print, summary, and plot
#' med <- Med(
#' phi = phi,
#' delta_t = 1:5,
#' from = "x",
#' to = "y",
#' med = "m"
#' )
#' print(med)
#' summary(med)
#' plot(med)
#'
#' @family Continuous Time Mediation Functions
#' @keywords cTMed effects path
#' @export
Med <- function(phi,
delta_t,
from,
to,
med) {
idx <- rownames(phi)
stopifnot(
idx == colnames(phi),
length(from) == 1,
length(to) == 1,
from %in% idx,
to %in% idx
)
for (i in seq_len(length(med))) {
stopifnot(
med[i] %in% idx
)
}
delta_t <- ifelse(
test = delta_t <= 0,
yes = .Machine$double.xmin,
no = delta_t
)
args <- list(
phi = phi,
delta_t = delta_t,
from = from,
to = to,
med = med,
network = FALSE
)
from <- which(idx == from)
to <- which(idx == to)
med <- sapply(
X = med,
FUN = function(x,
idx) {
return(
which(idx == x)
)
},
idx = idx
)
if (length(delta_t) > 1) {
output <- .Meds(
phi = phi,
delta_t = delta_t,
from = from,
to = to,
med = med
)
colnames(output) <- c(
"total",
"direct",
"indirect",
"interval"
)
} else {
output <- matrix(
data = .Med(
phi = phi,
delta_t = delta_t,
from = from,
to = to,
med = med
),
nrow = 1
)
colnames(output) <- c(
"total",
"direct",
"indirect",
"interval"
)
}
out <- list(
call = match.call(),
args = args,
fun = "Med",
output = output
)
class(out) <- c(
"ctmedmed",
class(out)
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.