# R/selection.R In caret: Classification and Regression Training

#### Documented in oneSEtolerance

## In these functions, x is the data fram of performance values and tuning parameters.
#' Selecting tuning Parameters
#'
#' Various functions for setting tuning parameters
#'
#' These functions can be used by \code{\link{train}} to select the "optimal"
#' model from a series of models. Each requires the user to select a metric
#' that will be used to judge performance. For regression models, values of
#' \code{"RMSE"} and \code{"Rsquared"} are applicable. Classification models
#' use either \code{"Accuracy"} or \code{"Kappa"} (for unbalanced class
#' distributions.
#'
#' More details on these functions can be found at
#' \url{http://topepo.github.io/caret/model-training-and-tuning.html#custom}.
#'
#' By default, \code{\link{train}} uses \code{best}.
#'
#' \code{best} simply chooses the tuning parameter associated with the largest
#' (or lowest for \code{"RMSE"}) performance.
#'
#' \code{oneSE} is a rule in the spirit of the "one standard error" rule of
#' Breiman et al. (1984), who suggest that the tuning parameter associated with
#' the best performance may over fit. They suggest that the simplest model
#' within one standard error of the empirically optimal model is the better
#' choice. This assumes that the models can be easily ordered from simplest to
#' most complex (see the Details section below).
#'
#' \code{tolerance} takes the simplest model that is within a percent tolerance
#' of the empirically optimal model. For example, if the largest Kappa value is
#' 0.5 and a simpler model within 3 percent is acceptable, we score the other
#' models using \code{(x - 0.5)/0.5 * 100}. The simplest model whose score is
#' not less than 3 is chosen (in this case, a model with a Kappa value of 0.35
#' is acceptable).
#'
#' User-defined functions can also be used. The argument
#' \code{selectionFunction} in \code{\link{trainControl}} can be used to pass
#' the function directly or to pass the function by name.
#'
#' @aliases oneSE best tolerance
#' @param x a data frame of tuning parameters and model results, sorted from
#' least complex models to the mst complex
#' @param metric a string that specifies what summary metric will be used to
#' select the optimal model. By default, possible values are "RMSE" and
#' "Rsquared" for regression and "Accuracy" and "Kappa" for classification. If
#' custom performance metrics are used (via the \code{summaryFunction} argument
#' in \code{\link{trainControl}}, the value of \code{metric} should match one
#' of the arguments. If it does not, a warning is issued and the first metric
#' given by the \code{summaryFunction} is used.
#' @param maximize a logical: should the metric be maximized or minimized?
#' @param num the number of resamples (for \code{oneSE} only)
#' @param tol the acceptable percent tolerance (for \code{tolerance} only)
#' @return a row index
#' @note In many cases, it is not very clear how to order the models on
#' simplicity. For simple trees and other models (such as PLS), this is
#' straightforward. However, for others it is not.
#'
#' For example, many of the boosting models used by \pkg{caret} have parameters
#' for the number of boosting iterations and the tree complexity (others may
#' also have a learning rate parameter). In this implementation, we order
#' models on number of iterations, then tree depth. Clearly, this is arguable
#' (please email the author for suggestions though).
#'
#' For MARS models, they are orders on the degree of the features, then the
#' number of retained terms.
#'
#' RBF SVM models are ordered first by the cost parameter, then by the kernel
#' parameter while polynomial models are ordered first on polynomial degree,
#' then cost and scale.
#'
#' Neural networks are ordered by the number of hidden units and then the
#' amount of weight decay.
#'
#' k-nearest neighbor models are ordered from most neighbors to least (i.e.
#' smoothest to model jagged decision boundaries).
#'
#' Elastic net models are ordered first on the L1 penalty, then by the L2
#' penalty.
#' @author Max Kuhn
#' @references Breiman, Friedman, Olshen, and Stone. (1984)
#' \emph{Classification and Regression Trees}. Wadsworth.
#' @keywords manip
#' @examples
#'
#' \dontrun{
#' # simulate a PLS regression model
#' test <- data.frame(ncomp = 1:5,
#'                    RMSE = c(3, 1.1, 1.02, 1, 2),
#'                    RMSESD = .4)
#'
#' best(test, "RMSE", maximize = FALSE)
#' oneSE(test, "RMSE", maximize = FALSE, num = 10)
#' tolerance(test, "RMSE", tol = 3, maximize = FALSE)
#'
#' ### usage example
#'
#' data(BloodBrain)
#'
#' marsGrid <- data.frame(degree = 1, nprune = (1:10) * 3)
#'
#' set.seed(1)
#' marsFit <- train(bbbDescr, logBBB,
#'                  method = "earth",
#'                  tuneGrid = marsGrid,
#'                  trControl = trainControl(method = "cv",
#'                                           number = 10,
#'                                           selectionFunction = "tolerance"))
#'
#' # around 18 terms should yield the smallest CV RMSE
#' }
#'
#'
#' @export oneSE
oneSE <- function(x, metric, num, maximize)
{
index <- 1:nrow(x)

if(!maximize)
{
bestIndex <- which.min(x[,metric])
perf <- x[bestIndex,metric] + (x[bestIndex,paste(metric, "SD", sep = "")])/sqrt(num)
candidates <- index[x[, metric] <= perf]
bestIter <- min(candidates)
} else {
bestIndex <- which.max(x[,metric])
perf <- x[bestIndex,metric] - (x[bestIndex,paste(metric, "SD", sep = "")])/sqrt(num)

candidates <- index[x[, metric] >= perf]
bestIter <- min(candidates)
}
bestIter
}

#' @rdname oneSE
#' @export
tolerance <- function(x, metric, tol = 1.5, maximize)
{

index <- 1:nrow(x)

if(!maximize)
{
best <- min(x[,metric])
perf <- (x[,metric] - best)/best * 100
candidates <- index[perf < tol]
bestIter <- min(candidates)
} else {
best <- max(x[,metric])
perf <- (x[,metric] - best)/best * -100
candidates <- index[perf < tol]
bestIter <- min(candidates)
}
bestIter
}


## Try the caret package in your browser

Any scripts or data that you put into this service are public.

caret documentation built on Aug. 9, 2022, 5:11 p.m.