Nothing
# PELT.var.norm=function(data,pen=0,know.mean=FALSE,mu=NA,nprune=FALSE){
# mll.var.EFK=function(x,n){
# neg=x<=0
# x[neg==TRUE]=0.00000000001
# return( n*(log(2*pi)+log(x/n)+1))
# }
# if((know.mean==FALSE)&(is.na(mu))){
# mu=mean(data)
# }
# n=length(data)
# y2=c(0,cumsum((data-mu)^2))
#
# lastchangecpts=matrix(NA,nrow=n,ncol=2)
# lastchangelike=matrix(NA,nrow=n,ncol=2)
# checklist=NULL
# lastchangelike[1,]=c(mll.var.EFK(y2[2],1),mll.var.EFK(y2[n+1]-y2[2],n-1)+pen)
# lastchangecpts[1,]=c(0,1)
# lastchangelike[2,]=c(mll.var.EFK(y2[3],2),mll.var.EFK(y2[n+1]-y2[3],n-2)+pen)
# lastchangecpts[2,]=c(0,2)
# lastchangelike[3,]=c(mll.var.EFK(y2[4],3),mll.var.EFK(y2[n+1]-y2[4],n-3)+pen)
# lastchangecpts[3,]=c(0,3)
# noprune=NULL
# for(tstar in 4:n){
# tmplike=NULL
# tmpt=c(checklist, tstar-2)
# tmplike=lastchangelike[tmpt,1]+mll.var.EFK(y2[tstar+1]-y2[tmpt+1],tstar-tmpt)+pen
# if(tstar==n){
# lastchangelike[tstar,]=c(min(c(tmplike,mll.var.EFK(y2[tstar+1]-y2[1],tstar)),na.rm=TRUE),0)
# }
# else{
# lastchangelike[tstar,]=c(min(c(tmplike,mll.var.EFK(y2[tstar+1]-y2[1],tstar)),na.rm=TRUE),mll.var.EFK(y2[n+1]-y2[tstar+1],n-tstar)+pen)
# }
# if(lastchangelike[tstar,1]==mll.var.EFK(y2[tstar+1]-y2[1],tstar)){
# lastchangecpts[tstar,]=c(0,tstar)
# }
# else{
# cpt=tmpt[tmplike==lastchangelike[tstar,1]][1]
# lastchangecpts[tstar,]=c(cpt,tstar)
# }
# checklist=tmpt[tmplike<=lastchangelike[tstar,1]+pen]
# if(nprune==TRUE){
# noprune=c(noprune,length(checklist))
# }
# }
# if(nprune==TRUE){
# return(nprune=noprune)
# }
# else{
# fcpt=NULL
# last=n
# while(last!=0){
# fcpt=c(fcpt,lastchangecpts[last,2])
# last=lastchangecpts[last,1]
# }
# return(cpt=sort(fcpt))
# }
# }
# PELT.mean.norm=function(data,pen=0,nprune=FALSE){
# mll.mean.EFK=function(x2,x,n){
# return( x2-(x^2)/n)
# }
# n=length(data)
# y2=c(0,cumsum(data^2))
# y=c(0,cumsum(data))
#
# lastchangecpts=matrix(NA,nrow=n,ncol=2)
# lastchangelike=matrix(NA,nrow=n,ncol=2)
# checklist=NULL
# lastchangelike[1,]=c(mll.mean.EFK(y2[2],y[2],1),mll.mean.EFK(y2[n+1]-y2[2],y[n+1]-y[2],n-1)+pen)
# lastchangecpts[1,]=c(0,1)
# lastchangelike[2,]=c(mll.mean.EFK(y2[3],y[3],2),mll.mean.EFK(y2[n+1]-y2[3],y[n+1]-y[3],n-2)+pen)
# lastchangecpts[2,]=c(0,2)
# lastchangelike[3,]=c(mll.mean.EFK(y2[4],y[4],3),mll.mean.EFK(y2[n+1]-y2[4],y[n+1]-y[4],n-3)+pen)
# lastchangecpts[3,]=c(0,3)
# noprune=NULL
# for(tstar in 4:n){
# tmplike=NULL
# tmpt=c(checklist, tstar-2)
# tmplike=lastchangelike[tmpt,1]+mll.mean.EFK(y2[tstar+1]-y2[tmpt+1],y[tstar+1]-y[tmpt+1],tstar-tmpt)+pen
# if(tstar==n){
# lastchangelike[tstar,]=c(min(c(tmplike,mll.mean.EFK(y2[tstar+1],y[tstar+1],tstar)),na.rm=TRUE),0)
# }
# else{
# lastchangelike[tstar,]=c(min(c(tmplike,mll.mean.EFK(y2[tstar+1],y[tstar+1],tstar)),na.rm=TRUE),mll.mean.EFK(y2[n+1]-y2[tstar+1],y[n+1]-y[tstar+1],n-tstar)+pen)
# }
# if(lastchangelike[tstar,1]==mll.mean.EFK(y2[tstar+1],y[tstar+1],tstar)){
# lastchangecpts[tstar,]=c(0,tstar)
# }
# else{
# cpt=tmpt[tmplike==lastchangelike[tstar,1]][1]
# lastchangecpts[tstar,]=c(cpt,tstar)
# }
# checklist=tmpt[tmplike<=lastchangelike[tstar,1]+pen]
# if(nprune==TRUE){
# noprune=c(noprune,length(checklist))
# }
# }
# if(nprune==TRUE){
# return(noprune)
# }
# else{
# fcpt=NULL
# last=n
# while(last!=0){
# fcpt=c(fcpt,lastchangecpts[last,2])
# last=lastchangecpts[last,1]
# }
# return(cpt=sort(fcpt))
# }
# }
# PELT.meanvar.norm=function(data,pen=0,nprune=FALSE){
# mll.meanvar.EFK=function(x2,x,n){
# sigmasq=(1/n)*(x2-(x^2)/n)
# neg=sigmasq<=0
# sigmasq[neg==TRUE]=0.00000000001
# return(n*(log(2*pi)+log(sigmasq)+1))
# }
# n=length(data)
# y2=c(0,cumsum(data^2))
# y=c(0,cumsum(data))
#
# lastchangecpts=matrix(NA,nrow=n,ncol=2)
# lastchangelike=matrix(NA,nrow=n,ncol=2)
# checklist=NULL
# lastchangelike[1,]=c(mll.meanvar.EFK(y2[2],y[2],1),mll.meanvar.EFK(y2[n+1]-y2[2],y[n+1]-y[2],n-1)+pen)
# lastchangecpts[1,]=c(0,1)
# lastchangelike[2,]=c(mll.meanvar.EFK(y2[3],y[3],2),mll.meanvar.EFK(y2[n+1]-y2[3],y[n+1]-y[3],n-2)+pen)
# lastchangecpts[2,]=c(0,2)
# lastchangelike[3,]=c(mll.meanvar.EFK(y2[4],y[4],3),mll.meanvar.EFK(y2[n+1]-y2[4],y[n+1]-y[4],n-3)+pen)
# lastchangecpts[3,]=c(0,3)
# noprune=NULL
# for(tstar in 4:n){
# tmplike=NULL
# tmpt=c(checklist, tstar-2)
# tmplike=lastchangelike[tmpt,1]+mll.meanvar.EFK(y2[tstar+1]-y2[tmpt+1],y[tstar+1]-y[tmpt+1],tstar-tmpt)+pen
# if(tstar==n){
# lastchangelike[tstar,]=c(min(c(tmplike,mll.meanvar.EFK(y2[tstar+1],y[tstar+1],tstar)),na.rm=TRUE),0)
# }
# else{
# lastchangelike[tstar,]=c(min(c(tmplike,mll.meanvar.EFK(y2[tstar+1],y[tstar+1],tstar)),na.rm=TRUE),mll.meanvar.EFK(y2[n+1]-y2[tstar+1],y[n+1]-y[tstar+1],n-tstar)+pen)
# }
# if(lastchangelike[tstar,1]==mll.meanvar.EFK(y2[tstar+1],y[tstar+1],tstar)){
# lastchangecpts[tstar,]=c(0,tstar)
# }
# else{
# cpt=tmpt[tmplike==lastchangelike[tstar,1]][1]
# lastchangecpts[tstar,]=c(cpt,tstar)
# }
# checklist=tmpt[tmplike<=lastchangelike[tstar,1]+pen]
# if(nprune==TRUE){
# noprune=c(noprune,length(checklist))
# }
# }
# if(nprune==TRUE){
# return(noprune)
# }
# else{
# fcpt=NULL
# last=n
# while(last!=0){
# fcpt=c(fcpt,lastchangecpts[last,2])
# last=lastchangecpts[last,1]
# }
# return(cpt=sort(fcpt))
# }
# }
segneigh.var.norm=function(data,Q=5,pen=0,know.mean=FALSE,mu=NA){
n=length(data)
if(n<4){stop('Data must have atleast 4 observations to fit a changepoint model.')}
if(length(pen)>1){stop("Penalty must be a single value and not a vector")}
if(Q>((n/2)+1)){stop(paste('Q is larger than the maximum number of segments',(n/2)+1))}
if((know.mean==FALSE)&(is.na(mu))){
mu=mean(data)
}
all.seg=matrix(0,ncol=n,nrow=n)
for(i in 1:n){
ssq=0
for(j in i:n){
m=j-i+1
ssq=ssq+(data[j]-mu)^2
if(ssq<=0){sigmasq=0.00000000001/m}
else{sigmasq=ssq/m}
all.seg[i,j]=-(m/2)*(log(2*pi)+log(sigmasq)+1)
}
}
like.Q=matrix(0,ncol=n,nrow=Q)
like.Q[1,]=all.seg[1,]
cp=matrix(NA,ncol=n,nrow=Q)
for(q in 2:Q){
for(j in q:n){
like=NULL
if((j-2-q)<0){
like=-Inf
}
else{
v=(q):(j-2)
like=like.Q[q-1,v]+all.seg[v+1,j]
}
like.Q[q,j]= max(like,na.rm=TRUE)
cp[q,j]=which(like==max(like,na.rm=TRUE))[1]+(q-1)
}
}
cps.Q=matrix(NA,ncol=Q,nrow=Q)
for(q in 2:Q){
cps.Q[q,1]=cp[q,n]
for(i in 1:(q-1)){
cps.Q[q,(i+1)]=cp[(q-i),cps.Q[q,i]]
}
}
k=0:(Q-1)
criterion=-2*like.Q[,n]+k*pen
op.cps=which(criterion==min(criterion,na.rm=T))[1]-1
if(op.cps==(Q-1)){warning('The number of segments identified is Q, it is advised to increase Q to make sure changepoints have not been missed.')}
if(op.cps==0){cpts=n}
else{cpts=c(sort(cps.Q[op.cps+1,][cps.Q[op.cps+1,]>0]),n)}
return(list(cps=t(apply(cps.Q,1,sort,na.last=TRUE)),cpts=cpts,op.cpts=op.cps,pen=pen,like=criterion[op.cps+1],like.Q=-2*like.Q[,n]))
}
segneigh.mean.norm=function(data,Q=5,pen=0){
n=length(data)
if(n<2){stop('Data must have atleast 2 observations to fit a changepoint model.')}
if(length(pen)>1){stop("Penalty must be a single value and not a vector")}
if(Q>(n-2)){stop(paste('Q is larger than the maximum number of segments',n-2))}
all.seg=matrix(0,ncol=n,nrow=n)
for(i in 1:n){
ssq=0
sumx=0
for(j in i:n){
len=j-i+1
sumx=sumx+data[j]
ssq=ssq+data[j]^2
all.seg[i,j]=-0.5*(ssq-(sumx^2)/len)
}
}
like.Q=matrix(0,ncol=n,nrow=Q)
like.Q[1,]=all.seg[1,]
cp=matrix(NA,ncol=n,nrow=Q)
for(q in 2:Q){
for(j in q:n){
like=NULL
v=(q-1):(j-1)
like=like.Q[q-1,v]+all.seg[v+1,j]
like.Q[q,j]= max(like,na.rm=TRUE)
cp[q,j]=which(like==max(like,na.rm=TRUE))[1]+(q-2)
}
}
cps.Q=matrix(NA,ncol=Q,nrow=Q)
for(q in 2:Q){
cps.Q[q,1]=cp[q,n]
for(i in 1:(q-1)){
cps.Q[q,(i+1)]=cp[(q-i),cps.Q[q,i]]
}
}
k=0:(Q-1)
criterion=-2*like.Q[,n]+k*pen
op.cps=which(criterion==min(criterion,na.rm=T))[1]-1
if(op.cps==(Q-1)){warning('The number of segments identified is Q, it is advised to increase Q to make sure changepoints have not been missed.')}
if(op.cps==0){cpts=n}
else{cpts=c(sort(cps.Q[op.cps+1,][cps.Q[op.cps+1,]>0]),n)}
return(list(cps=t(apply(cps.Q,1,sort,na.last=TRUE)),cpts=cpts,op.cpts=op.cps,pen=pen,like=criterion[op.cps+1],like.Q=-2*like.Q[,n]))
}
segneigh.meanvar.norm=function(data,Q=5,pen=0){
n=length(data)
if(n<4){stop('Data must have atleast 4 observations to fit a changepoint model.')}
if(length(pen)>1){stop("Penalty must be a single value and not a vector")}
if(Q>((n/2)+1)){stop(paste('Q is larger than the maximum number of segments',(n/2)+1))}
all.seg=matrix(0,ncol=n,nrow=n)
for(i in 1:n){
ssq=0
sumx=0
for(j in i:n){
len=j-i+1
sumx=sumx+data[j]
ssq=ssq+data[j]^2
sigmasq=(1/len)*(ssq-(sumx^2)/len)
if(sigmasq<=0){sigmasq=0.00000000001}
all.seg[i,j]=-(len/2)*(log(2*pi)+log(sigmasq)+1)
}
}
like.Q=matrix(0,ncol=n,nrow=Q)
like.Q[1,]=all.seg[1,]
cp=matrix(NA,ncol=n,nrow=Q)
for(q in 2:Q){
for(j in q:n){
like=NULL
if((j-2-q)<0){
like=-Inf
}
else{
v=(q):(j-2)
like=like.Q[q-1,v]+all.seg[v+1,j]
}
like.Q[q,j]= max(like,na.rm=TRUE)
cp[q,j]=which(like==max(like,na.rm=TRUE))[1]+(q-1)
}
}
cps.Q=matrix(NA,ncol=Q,nrow=Q)
for(q in 2:Q){
cps.Q[q,1]=cp[q,n]
for(i in 1:(q-1)){
cps.Q[q,(i+1)]=cp[(q-i),cps.Q[q,i]]
}
}
k=0:(Q-1)
criterion=-2*like.Q[,n]+k*pen
op.cps=which(criterion==min(criterion,na.rm=T))[1]-1
if(op.cps==(Q-1)){warning('The number of segments identified is Q, it is advised to increase Q to make sure changepoints have not been missed.')}
if(op.cps==0){cpts=n}
else{cpts=c(sort(cps.Q[op.cps+1,][cps.Q[op.cps+1,]>0]),n)}
return(list(cps=t(apply(cps.Q,1,sort,na.last=TRUE)),cpts=cpts,op.cpts=op.cps,pen=pen,like=criterion[op.cps+1],like.Q=-2*like.Q[,n]))
}
#binseg.var.norm=function(data,Q=5,pen=0,know.mean=FALSE,mu=NA){
# mll.var=function(x,n){
# neg=x<=0
# x[neg==TRUE]=0.00000000001
# return( -0.5*n*(log(2*pi)+log(x/n)+1))
# }
# n=length(data)
# if((know.mean==FALSE)&(is.na(mu))){
# mu=mean(data)
# }
# y2=c(0,cumsum((data-mu)^2))
# tau=c(0,n)
# cpt=matrix(0,nrow=2,ncol=Q)
# oldmax=1000
#
# for(q in 1:Q){
# lambda=rep(0,n-1)
# i=1
# st=tau[1]+1;end=tau[2]
# null=mll.var(y2[end+1]-y2[st],end-st+1)
# for(j in 1:(n-1)){
# if(j==end){
# st=end+1;i=i+1;end=tau[i+1]
# null=mll.var(y2[end+1]-y2[st],end-st+1)
# }else{
# lambda[j]=mll.var(y2[j+1]-y2[st],j-st+1)+mll.var(y2[end+1]-y2[j+1],end-j)-null
# }
# }
# k=which.max(lambda)[1]
# cpt[1,q]=k;cpt[2,q]=min(oldmax,max(lambda))
# oldmax=min(oldmax,max(lambda))
# tau=sort(c(tau,k))
# }
# op.cps=NULL
# p=1:(Q-1)
# for(i in 1:length(pen)){
# criterion=(2*cpt[2,])>=pen[i]
# if(sum(criterion)==0){
# op.cps=0
# }
# else{
# op.cps=c(op.cps,max(which((criterion)==TRUE)))
# }
# }
# return(list(cps=cpt,op.cpts=op.cps,pen=pen))
#}
# binseg.mean.norm=function(data,Q=5,pen=0){
# mll.mean=function(x2,x,n){
# return( -0.5*(x2-(x^2)/n))
# }
# n=length(data)
# y2=c(0,cumsum(data^2))
# y=c(0,cumsum(data))
# tau=c(0,n)
# cpt=matrix(0,nrow=2,ncol=Q)
# oldmax=1000
#
# for(q in 1:Q){
# lambda=rep(0,n-1)
# i=1
# st=tau[1]+1;end=tau[2]
# null=mll.mean(y2[end+1]-y2[st],y[end+1]-y[st],end-st+1)
# for(j in 1:(n-1)){
# if(j==end){
# st=end+1;i=i+1;end=tau[i+1]
# null=mll.mean(y2[end+1]-y2[st],y[end+1]-y[st],end-st+1)
# }else{
# lambda[j]=mll.mean(y2[j+1]-y2[st],y[j+1]-y[st],j-st+1)+mll.mean(y2[end+1]-y2[j+1],y[end+1]-y[j+1],end-j)-null
# }
# }
# k=which.max(lambda)[1]
# cpt[1,q]=k;cpt[2,q]=min(oldmax,max(lambda)) # done so that when we do the decision later we can take the max(which(criterion==T)), rather than min(which(criterion==F))-1
# oldmax=min(oldmax,max(lambda))
# tau=sort(c(tau,k))
# }
# op.cps=NULL
# p=1:(Q-1)
# for(i in 1:length(pen)){
# criterion=(2*cpt[2,])>=pen[i]
# if(sum(criterion)==0){
# op.cps=0
# }
# else{
# op.cps=c(op.cps,max(which((criterion)==TRUE)))
# }
# }
# return(list(cps=cpt,op.cpts=op.cps,pen=pen))
# }
# binseg.meanvar.norm=function(data,Q=5,pen=0){
# mll.meanvar=function(x2,x,n){
# sigmasq=(1/n)*(x2-(x^2)/n)
# neg=sigmasq<=0
# sigmasq[neg==TRUE]=0.00000000001
# return(-(n/2)*(log(2*pi)+log(sigmasq)+1))
# }
# n=length(data)
# y2=c(0,cumsum(data^2))
# y=c(0,cumsum(data))
# tau=c(0,n)
# cpt=matrix(0,nrow=2,ncol=Q)
# oldmax=1000
#
# for(q in 1:Q){
# lambda=rep(0,n-1)
# i=1
# st=tau[1]+1;end=tau[2]
# null=mll.meanvar(y2[end+1]-y2[st],y[end+1]-y[st],end-st+1)
# for(j in 1:(n-1)){
# if(j==end){
# st=end+1;i=i+1;end=tau[i+1]
# null=mll.meanvar(y2[end+1]-y2[st],y[end+1]-y[st],end-st+1)
# }else{
# if((j-st)<2){lambda[j]=-1*10^(100)}
# else if((end-j)<2){lambda[j]=-1*10^(100)}
# else{lambda[j]=mll.meanvar(y2[j+1]-y2[st],y[j+1]-y[st],j-st+1)+mll.meanvar(y2[end+1]-y2[j+1],y[end+1]-y[j+1],end-j)-null}
# }
# }
# k=which.max(lambda)[1]
# cpt[1,q]=k;cpt[2,q]=min(oldmax,max(lambda))
# oldmax=min(oldmax,max(lambda))
# tau=sort(c(tau,k))
# }
# op.cps=NULL
# p=1:(Q-1)
# for(i in 1:length(pen)){
# criterion=(2*cpt[2,])>=pen[i]
# if(sum(criterion)==0){
# op.cps=0
# }
# else{
# op.cps=c(op.cps,max(which((criterion)==TRUE)))
# }
# }
# return(list(cps=cpt,op.cpts=op.cps,pen=pen))
# }
multiple.var.norm=function(data,mul.method="PELT",penalty="MBIC",pen.value=0,Q=5,know.mean=FALSE,mu=NA,class=TRUE,param.estimates=TRUE, minseglen=2){
if(!((mul.method=="PELT")||(mul.method=="BinSeg")||(mul.method=="SegNeigh"))){
stop("Multiple Method is not recognised")
}
costfunc = "var.norm"
if(penalty =="MBIC"){
if(mul.method=="SegNeigh"){
stop('MBIC penalty not implemented for SegNeigh method, please choose an alternative penalty')
}
costfunc = "var.norm.mbic"
}
diffparam=1
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
n=length(data)
mu=mu[1]
}
else{
n=ncol(data)
}
if(n<4){stop('Data must have atleast 4 observations to fit a changepoint model.')}
if(n<(2*minseglen)){stop('Minimum segment legnth is too large to include a change in this data')}
pen.value = penalty_decision(penalty, pen.value, n, diffparam, asymcheck=costfunc, method=mul.method)
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
if((know.mean==FALSE)&(is.na(mu))){
mu=mean(coredata(data))
}
out = data_input(data=data,method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q,var=mu)
if(class==TRUE){
out=class_input(data, cpttype="variance", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out, Q=Q)
param.est(out)=c(param.est(out),mean=mu)
return(out)
}
else{ return(out[[2]])}
}
else{
rep=nrow(data)
out=list()
if(length(mu)!=rep){
mu=rep(mu,rep)
}
for(i in 1:rep){
if((know.mean==FALSE)&(is.na(mu[i]))){
mu=mean(coredata(data[i,]))
}
out[[i]]=data_input(data[i,],method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q,var=mu)
}
cpts=lapply(out, '[[', 2)
if(class==TRUE){
ans=list()
for(i in 1:rep){
ans[[i]]=class_input(data[i,], cpttype="variance", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out[[i]], Q=Q)
param.est(ans[[i]])=c(param.est(ans[[i]]),mean=mu[i])
}
return(ans)
}
else{return(cpts)}
}
}
multiple.mean.norm=function(data,mul.method="PELT",penalty="MBIC",pen.value=0,Q=5,class=TRUE,param.estimates=TRUE,minseglen){
if(!((mul.method=="PELT")||(mul.method=="BinSeg")||(mul.method=="SegNeigh"))){
stop("Multiple Method is not recognised")
}
costfunc = "mean.norm"
if(penalty=="MBIC"){
if(mul.method=="SegNeigh"){
stop('MBIC penalty not implemented for SegNeigh method, please choose an alternative penalty')
}
costfunc = "mean.norm.mbic"
}
diffparam=1
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
n=length(data) # still works if data is of class ts
}
else{
n=ncol(data)
}
if(n<(2*minseglen)){stop('Minimum segment legnth is too large to include a change in this data')}
pen.value = penalty_decision(penalty, pen.value, n, diffparam, asymcheck = costfunc, method=mul.method)
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
out = data_input(data=data,method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
if(class==TRUE){
return(class_input(data, cpttype="mean", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out, Q=Q))
}
else{ return(out[[2]])}
}
else{
rep=nrow(data)
out=list()
if(class==TRUE){cpts=list()}
for(i in 1:rep){
out[[i]]=data_input(data[i,],method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
}
cps=lapply(out, '[[', 2)
if(class==TRUE){
ans=list()
for(i in 1:rep){
ans[[i]]=class_input(data[i,], cpttype="mean", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out[[i]], Q=Q)
}
return(ans)
}
else{return(cps)}
}
}
multiple.meanvar.norm=function(data,mul.method="PELT",penalty="MBIC",pen.value=0,Q=5,class=TRUE,param.estimates=TRUE,minseglen){
if(!((mul.method=="PELT")||(mul.method=="BinSeg")||(mul.method=="SegNeigh"))){
stop("Multiple Method is not recognised")
}
costfunc = "meanvar.norm"
if(penalty=="MBIC"){
if(mul.method=="SegNeigh"){
stop('MBIC penalty not implemented for SegNeigh method, please choose an alternative penalty')
}
costfunc = "meanvar.norm.mbic"
}
diffparam=2
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
n=length(data)
}
else{
n=ncol(data)
}
if(n<(2*minseglen)){stop('Minimum segment legnth is too large to include a change in this data')}
pen.value = penalty_decision(penalty, pen.value, n, diffparam, asymcheck = costfunc, method=mul.method)
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
out = data_input(data=data,method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
if(class==TRUE){
return(class_input(data, cpttype="mean and variance", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out, Q=Q))
}
else{ return(out[[2]])}
}
else{
rep=nrow(data)
out=list()
for(i in 1:rep){
out[[i]]=data_input(data[i,],method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
}
cps=lapply(out, '[[', 2)
if(class==TRUE){
ans=list()
for(i in 1:rep){
ans[[i]] = class_input(data[i,], cpttype="mean and variance", method=mul.method, test.stat="Normal", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out[[i]], Q=Q)
}
return(ans)
}
else{return(cps)}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.