View source: R/VCR_auxiliaryFunctions.R
makeKernel | R Documentation |
Computes kernel value or kernel matrix, where the kernel type is extracted from an svm trained by e1071::svm
.
makeKernel(X1, X2 = NULL, svfit)
X1 |
first matrix (or vector) of coordinates. |
X2 |
if not |
svfit |
output from |
.
the kernel matrix, of dimensions nrow(X1)
by nrow(X2)
. When both X1
and X2
are vectors, the result is a single number.
Raymaekers J., Rousseeuw P.J.
Raymaekers J., Rousseeuw P.J., Hubert M. (2021). Class maps for visualizing classification results. Technometrics, appeared online. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.2021.1927849")}(link to open access pdf)
makeFV
library(e1071)
set.seed(1); X <- matrix(rnorm(200 * 2), ncol = 2)
X[1:100, ] <- X[1:100, ] + 2
X[101:150, ] <- X[101:150, ] - 2
y <- as.factor(c(rep("blue", 150), rep("red", 50))) # two classes
# We now fit an SVM with radial basis kernel to the data:
set.seed(1) # to make the result of svm() reproducible.
svmfit <- svm(y~., data = data.frame(X = X, y = y), scale = FALSE,
kernel = "radial", cost = 10, gamma = 1, probability = TRUE)
Kxx <- makeKernel(X, svfit = svmfit)
# The result is a square kernel matrix:
dim(Kxx) # 200 200
Kxx[1:5, 1:5]
# For more examples, we refer to the vignette:
## Not run:
vignette("Support_vector_machine_examples")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.