R/helper_time_series_compare.R

Defines functions helper_time_series_compare

Documented in helper_time_series_compare

#' Designed for the CM SAF R Toolbox.
#'
#' This function is a helper function for render_plot_time_series_compare.
#'
#'@param visualizeVariables A data frame containing all meta data for the plotting process (data.frame).
#'@export
helper_time_series_compare <- function(visualizeVariables) {
  list_data_station <- list()
  data_nc <- visualizeVariables$data
  date.time <- visualizeVariables$date.time
  
  station_all <- NULL
  for (i in seq_along(visualizeVariables$data2$lon)) {
    dummy <- paste0("[", round(visualizeVariables$data2$lon[i], digits = 1), ";", round(visualizeVariables$data2$lat[i], digits = 1), "]")
    station_all <- append(station_all, dummy)
  }
  station_all_seq <- unique(station_all)
  
  for(index_time in 1:length(date.time)){
    a <- visualizeVariables$data2
    
    lon <- visualizeVariables$lon
    lat <- visualizeVariables$lat
    min_lon <- min(lon, na.rm = TRUE)
    max_lon <- max(lon, na.rm = TRUE)
    min_lat <- min(lat, na.rm = T)
    max_lat <- max(lat, na.rm = T)
    
    # lon
    slider1 <- c(max(round(as.numeric(min_lon)), -180), min(round(as.numeric(max_lon)), 180))
    
    # lat
    slider2 <- c(max(round(as.numeric(min_lat)), -90), min(round(as.numeric(max_lat)), 90))
    
    lo_dummy <- c("lon", "longitude", "laenge", "x", "lon_rep")
    la_dummy <- c("lat", "latitude", "breite", "y", "lat_rep")
    ti_dummy <- c("time", "date", "zeit", "t", "get_time.file_data.time_info.units..file_data.dimension_data.t.")
    da_dummy <- c("data", "daten", "z", "element", "result")
    
    dn <- attr(a, "element_name")
    if (!is.null(dn)) {
      da_dummy <- append(da_dummy, dn)
    } else {
      dn <- attr(a, "data_name")
      if (!is.null(dn)) {
        da_dummy <- append(da_dummy, dn)
      }
    }
    
    instat_names <- names(a)
    
    lo_n <- 0
    la_n <- 0
    ti_n <- 0
    da_n <- 0
    
    for (i in seq_along(instat_names)) {
      if (toupper(instat_names[i]) %in% toupper(lo_dummy)) (lo_n <- i)
      if (toupper(instat_names[i]) %in% toupper(la_dummy)) (la_n <- i)
      if (toupper(instat_names[i]) %in% toupper(ti_dummy)) (ti_n <- i)
      if (toupper(instat_names[i]) %in% toupper(da_dummy)) (da_n <- i)
    }
    
    if (lo_n > 0 & la_n > 0 & ti_n > 0 & da_n > 0) {
      # check monthly or daily
      # station
      time_station <- a[, ti_n]
      if (length(time_station) > 500) (time_station <- time_station[1:500])
      mon_station  <- format(as.Date(time_station), "%m")
      year_station <- format(as.Date(time_station), "%Y")
      day_station  <- format(as.Date(time_station), "%d")
      
      dummy <- which(mon_station == mon_station[1] & year_station == year_station[1])
      mmdm <- "d"
      
      if (length(unique(day_station[dummy])) == 1) {
        mmdm <- "m"
      }
      
      # satellite
      time_sat <- date.time
      if (length(time_sat) > 40) (time_sat <- time_sat[1:40])
      mon_sat  <- format(as.Date(time_sat), "%m")
      year_sat <- format(as.Date(time_sat), "%Y")
      day_sat  <- format(as.Date(time_sat), "%d")
      dummy <- which(mon_sat == mon_sat[1] & year_sat == year_sat[1])
      mmdm_sat <- "d"
      if (length(unique(day_sat[dummy])) == 1) {
        mmdm_sat <- "m"
      }
      
      # extract data for chosen time step
      if (mmdm == "m" & mmdm_sat == "m") {
        match_time   <- which(format(as.Date(a[, ti_n]), "%Y-%m") == format(as.Date(date.time[index_time]), "%Y-%m"), arr.ind = TRUE)
      } else {
        match_time   <- which(a[, ti_n] == date.time[index_time], arr.ind = TRUE)
      }
      
      lon_station  <- a[, lo_n][match_time]
      lat_station  <- a[, la_n][match_time]
      data_station <- a[, da_n][match_time]
      
      # delete NAs
      dummy <- !is.na(data_station)
      data_station <- data_station[dummy]
      data_station <- data_station
      lon_station  <- lon_station[dummy]
      lat_station  <- lat_station[dummy]
      # Extract corresponding data points
      
      data_sat <- c(seq_along(data_station))
      
      result_x <- c()
      result_y <- c()
      
      result_x <- rep(lon, length(lat))
      
      for(j in seq_along(lat)){
        result_y <- append(result_y, rep(lat[j], length(lon)))
      }
      
      A <- cbind(x=result_x, y=result_y)
      
      for (istation in seq_along(data_station)) {
        B <- cbind(x=c(lon_station[istation]), y=c(lat_station[istation]))
        tree <- SearchTrees::createTree(A)
        inds <- SearchTrees::knnLookup(tree, newdat=B, k=1)
        
        lon_coor <- A[inds,1]
        lat_coor <- A[inds,2]
        
        data_sat[istation] <- data_nc[which(lon == lon_coor),which(lat == lat_coor), which(date.time == date.time[index_time])]
      }
      cd <- data.frame(data_sat, data_station, lon_station, lat_station)
    }
    
    labs <- NULL
    for (i in seq_along(cd$lon_station)) {
      dummy <- paste0("[", round(cd$lon_station[i], digits = 1), ";", round(cd$lat_station[i], digits = 1), "]")
      labs <- append(labs, dummy)
    }
    row.names(cd) <- labs
    
    for(i in 1:length(station_all_seq)){
      value <- cd[station_all_seq[i],]
      
      if(index_time==1){
        list_data_station <- append(list_data_station, list(cd[station_all_seq[i],]))
        row.names(list_data_station[[i]]) <- NULL
      } else {
        list_data_station[[i]] <- rbind(list_data_station[[i]],cd[station_all_seq[i],])
        row.names(list_data_station[[i]]) <- NULL
      }
    }
  }
  return(list_data_station)
}

Try the cmsafvis package in your browser

Any scripts or data that you put into this service are public.

cmsafvis documentation built on July 3, 2024, 5:07 p.m.