Nothing
#-------------------------------------------------------------------------------
#' Dichotomous Response Model
#'
#' This function calculates predictions and log-likelihood values for a
#' dichotomous response model framed using generalized latent variable modeling
#' (GLVM; Skrondal & Rabe-Hesketh, 2004).
#'
#' @param y Item response matrix (K by IJ).
#' @param omega Contrast effects matrix (K by
#' MN).
#' @param gamma Contrast codes matrix (JM by MN).
#' @param lambda Item slope matrix (IJ by JM).
#' @param zeta Specific effects matrix (K by
#' JM).
#' @param nu Item intercept matrix (IJ by 1).
#' @param kappa Item guessing matrix (IJ by 1).
#' @param link Choose between "logit" or "probit" link functions.
#'
#' @return p = response probability matrix (K by IJ); yhatstar = latent response
#' variate matrix (K by IJ); loglikelihood = model log-likelihood (scalar).
#'
#' @section Dimensions:
#' I = Number of items per condition; J = Number of conditions; K = Number of
#' examinees; M Number of ability (or trait) dimensions; N Number of contrasts
#' (should include intercept).
#'
#' @references
#'
#' Skrondal, A., & Rabe-Hesketh, S. (2004). \emph{Generalized latent variable
#' modeling: Multilevel, longitudinal, and structural equation models}. Boca
#' Raton: Chapman & Hall/CRC.
#'
#' @export dich_response_model
#-------------------------------------------------------------------------------
dich_response_model <- function(y = NULL, omega = NULL, gamma = NULL,
lambda = NULL, zeta = NULL, nu = NULL,
kappa = NULL, link = NULL) {
link <- if (is.null(x = link)) {
"probit"
} else {
link
}
kappa_mat <- if (is.null(x = kappa)) {
array(data = 0, dim = dim(x = y))
} else {
array(data = 1, dim = c(nrow(x = y), 1)) %*% t(kappa)
}
nu_mat <- array(data = 1, dim = c(nrow(x = y), 1)) %*% t(nu)
yhatstar <- nu_mat + omega %*% t(gamma) %*% t(lambda) + zeta %*% t(lambda)
p <- if (link == "logit") {
kappa_mat + (1 - kappa_mat) * plogis(q = yhatstar)
} else if (link == "probit") {
kappa_mat + (1 - kappa_mat) * pnorm(q = yhatstar)
}
ll <- sum(log(x = (p ^ y) * (1 - p) ^ (1 - y)))
mod <- list(p = p, yhatstar = yhatstar, loglikelihood = ll)
return(mod)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.