Nothing
#' CI for the Population Mean Difference
#'
#' This function calculates CIs for the population value of mean(x) - mean(y).
#' The default is Student's method with Welch's correction for unequal variances,
#' but also bootstrap CIs are available.
#'
#' The default bootstrap type is "stud" (bootstrap t) as it has a stable variance
#' estimator (see Efron, p. 188). Resampling is done within sample.
#' When `boot_type = "stud"`, the standard error is estimated by Welch's method
#' if `var.equal = FALSE` (the default), and by pooling otherwise.
#' Thus, `var.equal` not only has an effect for the classic Student approach
#' (`type = "t"`) but also for `boot_type = "stud"`.
#'
#' @inheritParams ci_mean
#' @param y A numeric vector.
#' @param var.equal Should the two variances be treated as being equal?
#' The default is `FALSE`. If `TRUE`, the pooled variance is used to estimate
#' the variance of the mean difference. Otherweise, Welch's approach is used.
#' This also applies to the "stud" bootstrap.
#' @param type Type of CI. One of "t" (default), or "bootstrap".
#' @returns An object of class "cint", see [ci_mean()] for details.
#' @export
#' @examples
#' x <- 10:30
#' y <- 1:30
#' ci_mean_diff(x, y)
#' t.test(x, y)$conf.int
#' ci_mean_diff(x, y, type = "bootstrap", R = 999) # Use larger R
#' @references
#' Efron, B. and Tibshirani R. J. (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC.
ci_mean_diff <- function(x, y, probs = c(0.025, 0.975), var.equal = FALSE,
type = c("t", "bootstrap"),
boot_type = c("stud", "bca", "perc", "norm", "basic"),
R = 9999L, seed = NULL, ...) {
# Input checks and initialization
type <- match.arg(type)
boot_type <- match.arg(boot_type)
check_probs(probs)
# Remove NAs and calculate estimate
x <- x[!is.na(x)]
y <- y[!is.na(y)]
stopifnot(
length(x) >= 1L,
length(y) >= 1L
)
estimate <- mean(x) - mean(y)
# Calculate CI
if (type == "t") {
cint <- stats::t.test(
x,
y,
var.equal = var.equal,
alternative = probs2alternative(probs),
conf.level = diff(probs)
)$conf.int
} else if (type == "bootstrap") {
X <- data.frame(v = c(x, y), g = rep(1:2, times = c(length(x), length(y))))
check_bca(boot_type, n = nrow(X), R = R)
set_seed(seed)
S <- boot::boot(
X,
statistic = function(X, id) boot_two_means(
X, id, se = (boot_type == "stud"), var.equal = var.equal
),
strata = X[["g"]],
R = R,
...
)
cint <- ci_boot(S, boot_type = boot_type, probs = probs)
}
# Organize output
cint <- check_output(cint, probs = probs, parameter_range = c(-Inf, Inf))
out <- list(
parameter = "population value of mean(x)-mean(y)",
interval = cint,
estimate = estimate,
probs = probs,
type = type,
info = boot_info(type, boot_type = boot_type, R = R)
)
class(out) <- "cint"
out
}
#' CI for the Population Quantile Difference of two Samples
#'
#' This function calculates bootstrap CIs for the population value of
#' q-quantile(x) - q-quantile(y), by default using "bca" bootstrap.
#' Resampling is done within sample.
#'
#' @inheritParams ci_mean
#' @param y A numeric vector.
#' @param q A single probability value determining the quantile (0.5 for median).
#' @param type Type of CI. Currently, "bootstrap" is the only option.
#' @returns An object of class "cint", see [ci_mean()] for details.
#' @export
#' @examples
#' x <- 10:30
#' y <- 1:30
#' ci_quantile_diff(x, y, R = 999) # Use larger R
#' @seealso [ci_median_diff()]
ci_quantile_diff <- function(x, y, q = 0.5, probs = c(0.025, 0.975), type = "bootstrap",
boot_type = c("bca", "perc", "norm", "basic"),
R = 9999L, seed = NULL, ...) {
# Input checks and initialization
type <- match.arg(type)
boot_type <- match.arg(boot_type)
check_probs(probs)
stopifnot(length(q) == 1L, q > 0, q < 1)
# Remove NAs and calculate estimate
x <- x[!is.na(x)]
y <- y[!is.na(y)]
stopifnot(
length(x) >= 1L,
length(y) >= 1L
)
estimate <- stats::quantile(x, probs = q, names = FALSE) -
stats::quantile(y, probs = q, names = FALSE)
# Calculate CI
X <- data.frame(v = c(x, y), g = rep(1:2, times = c(length(x), length(y))))
check_bca(boot_type, n = nrow(X), R = R)
set_seed(seed)
S <- boot::boot(
X,
statistic = function(X, id) boot_two_stats(
X, id, FUN = stats::quantile, probs = q, names = FALSE
),
strata = X[["g"]],
R = R,
...
)
cint <- ci_boot(S, boot_type = boot_type, probs = probs)
# Organize output
cint <- check_output(cint, probs = probs, parameter_range = c(-Inf, Inf))
out <- list(
parameter = sprintf(
"population value of %s quantile(x) - %s quantile(y)", format_p(q), format_p(q)
),
interval = cint,
estimate = estimate,
probs = probs,
type = type,
info = boot_info(type, boot_type = boot_type, R = R)
)
class(out) <- "cint"
out
}
#' CI for the Population Median Difference of two Samples
#'
#' This function calculates bootstrap CIs for the population value of
#' median(x) - median(y) by calling [ci_quantile_diff()].
#'
#' @inheritParams ci_quantile_diff
#' @returns An object of class "cint", see [ci_mean()] for details.
#' @export
#' @examples
#' x <- 10:30
#' y <- 1:30
#' ci_median_diff(x, y, R = 999) # Use larger value for R
#' @seealso [ci_quantile_diff()]
ci_median_diff <- function(x, y, probs = c(0.025, 0.975), type = "bootstrap",
boot_type = c("bca", "perc", "norm", "basic"),
R = 9999L, seed = NULL, ...) {
out <- ci_quantile_diff(
x,
y,
q = 0.5,
probs = probs,
type = type,
boot_type = boot_type,
R = R,
seed = seed,
...
)
out$parameter <- "population value of median(x)-median(y)"
out
}
# Helper functions
# Function to efficiently calculate the mean difference statistic in boot::boot()
boot_two_means <- function(X, id, se = FALSE, var.equal = FALSE) {
X <- X[id, ]
x <- X[X[["g"]] == 1, "v"]
y <- X[X[["g"]] == 2, "v"]
c(mean(x) - mean(y), if (se) se_mean_diff(x, y, var.equal = var.equal)^2)
}
# Function to efficiently calculate difference statistics in boot::boot()
boot_two_stats <- function(X, id, FUN = mean, ...) {
X <- X[id, ]
x <- X[X[["g"]] == 1, "v"]
y <- X[X[["g"]] == 2, "v"]
FUN(x, ...) - FUN(y, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.