svyatk | R Documentation |
Estimate the Atkinson index, an inequality measure
svyatk(formula, design, ...)
## S3 method for class 'survey.design'
svyatk(
formula,
design,
epsilon = 1,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
influence = FALSE,
...
)
## S3 method for class 'svyrep.design'
svyatk(
formula,
design,
epsilon = 1,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
return.replicates = FALSE,
...
)
## S3 method for class 'DBIsvydesign'
svyatk(formula, design, ...)
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
future expansion |
epsilon |
a parameter that determines the sensivity towards inequality in the bottom of the distribution. Defaults to |
na.rm |
Should cases with missing values be dropped? |
deff |
Return the design effect (see |
linearized |
Should a matrix of linearized variables be returned |
influence |
Should a matrix of (weighted) influence functions be returned? (for compatibility with |
return.replicates |
Return the replicate estimates? |
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
Guilherme Jacob, Djalma Pessoa and Anthony Damico
Matti Langel (2012). Measuring inequality in finite population sampling. PhD thesis: Universite de Neuchatel, URL https://doc.rero.ch/record/29204/files/00002252.pdf.
Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.
svygei
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)
# subset all designs to positive income and non-missing records only
des_eusilc_pos_inc <- subset( des_eusilc , eqincome > 0 )
des_eusilc_rep_pos_inc <- subset( des_eusilc_rep , eqincome > 0 )
# linearized design
svyatk( ~eqincome , des_eusilc_pos_inc, epsilon = .5 )
svyatk( ~eqincome , des_eusilc_pos_inc )
svyatk( ~eqincome , des_eusilc_pos_inc, epsilon = 2 )
# replicate-weighted design
svyatk( ~eqincome , des_eusilc_rep_pos_inc, epsilon = .5 )
svyatk( ~eqincome , des_eusilc_rep_pos_inc )
svyatk( ~eqincome , des_eusilc_rep_pos_inc, epsilon = 2 )
# subsetting
svyatk( ~eqincome , subset(des_eusilc_pos_inc, db040 == "Styria"), epsilon = .5 )
svyatk( ~eqincome , subset(des_eusilc_pos_inc, db040 == "Styria") )
svyatk( ~eqincome , subset(des_eusilc_pos_inc, db040 == "Styria"), epsilon = 2 )
svyatk( ~eqincome , subset(des_eusilc_rep_pos_inc, db040 == "Styria"), epsilon = .5 )
svyatk( ~eqincome , subset(des_eusilc_rep_pos_inc, db040 == "Styria") )
svyatk( ~eqincome , subset(des_eusilc_rep_pos_inc, db040 == "Styria"), epsilon = 2 )
## Not run:
# linearized design using a variable with missings (but subsetted to remove negatives)
svyatk( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n)), epsilon = .5 )
svyatk( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n)), epsilon = .5 , na.rm=TRUE )
# replicate-weighted design using a variable with missings (but subsetted to remove negatives)
svyatk( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n)), epsilon = .5 )
svyatk( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n)), epsilon = .5 , na.rm=TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
# subset all designs to positive income and non-missing records only
dbd_eusilc_pos_inc <- subset( dbd_eusilc , eqincome > 0 )
# database-backed linearized design
svyatk( ~eqincome , dbd_eusilc_pos_inc, epsilon = .5 )
svyatk( ~eqincome , dbd_eusilc_pos_inc )
svyatk( ~eqincome , dbd_eusilc_pos_inc, epsilon = 2 )
svyatk( ~eqincome , subset(dbd_eusilc_pos_inc, db040 == "Styria"), epsilon = .5 )
svyatk( ~eqincome , subset(dbd_eusilc_pos_inc, db040 == "Styria") )
svyatk( ~eqincome , subset(dbd_eusilc_pos_inc, db040 == "Styria"), epsilon = 2 )
# database-backed linearized design using a variable with missings
# (but subsetted to remove negatives)
svyatk( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n)), epsilon = .5 )
svyatk( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n)), epsilon = .5 , na.rm=TRUE )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.