svyzenga | R Documentation |
Estimate the Zenga index, a measure of inequality
svyzenga(formula, design, ...)
## S3 method for class 'survey.design'
svyzenga(
formula,
design,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
influence = FALSE,
...
)
## S3 method for class 'svyrep.design'
svyzenga(
formula,
design,
na.rm = FALSE,
deff = FALSE,
linearized = FALSE,
return.replicates = FALSE,
...
)
## S3 method for class 'DBIsvydesign'
svyzenga(formula, design, ...)
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
future expansion |
na.rm |
Should cases with missing values be dropped? |
deff |
Return the design effect (see |
linearized |
Should a matrix of linearized variables be returned |
influence |
Should a matrix of (weighted) influence functions be returned? (for compatibility with |
return.replicates |
Return the replicate estimates? |
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
Djalma Pessoa, Guilherme Jacob, and Anthony Damico
Lucio Barabesi, Giancarlo Diana and Pier Francesco Perri (2016). Linearization of inequality indices in the design-based framework. Statistics, 50(5), 1161-1172. DOI \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/02331888.2015.1135924")}.
Matti Langel and Yves Tille (2012). Inference by linearization for Zenga's new inequality index: a comparison with the Gini index. Metrika, 75, 1093-1110. DOI \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s00184-011-0369-1")}.
Matti Langel (2012). Measuring inequality in finite population sampling. PhD thesis: Universite de Neuchatel, URL https://doc.rero.ch/record/29204/files/00002252.pdf.
svygini
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)
svyzenga( ~eqincome , design = des_eusilc )
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)
svyzenga( ~eqincome , design = des_eusilc_rep )
## Not run:
# linearized design using a variable with missings
svyzenga( ~ py010n , design = des_eusilc )
svyzenga( ~ py010n , design = des_eusilc , na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyzenga( ~ py010n , design = des_eusilc_rep )
svyzenga( ~ py010n , design = des_eusilc_rep , na.rm = TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
svyzenga( ~ eqincome , design = dbd_eusilc )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.