svyjdiv | R Documentation |
Estimate the j-divergence measure, an entropy-based measure of inequality
svyjdiv(formula, design, ...) ## S3 method for class 'survey.design' svyjdiv(formula, design, na.rm = FALSE, ...) ## S3 method for class 'svyrep.design' svyjdiv(formula, design, na.rm = FALSE, ...) ## S3 method for class 'DBIsvydesign' svyjdiv(formula, design, ...)
formula |
a formula specifying the income variable |
design |
a design object of class |
... |
future expansion |
na.rm |
Should cases with missing values be dropped? |
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
This measure only allows for strictly positive variables.
Object of class "cvystat
", which are vectors with a "var
" attribute giving the variance and a "statistic
" attribute giving the name of the statistic.
This function is experimental and is subject to change in later versions.
Guilherme Jacob
Nicholas Rohde (2016). J-divergence measurements of economic inequality. J. R. Statist. Soc. A, v. 179, Part 3 (2016), pp. 847-870. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12153.
Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.
svygei
library(survey) library(laeken) data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) ) # linearized design des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc ) des_eusilc <- convey_prep(des_eusilc) svyjdiv( ~eqincome , design = subset( des_eusilc , eqincome > 0 ) ) # replicate-weighted design des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" ) des_eusilc_rep <- convey_prep(des_eusilc_rep) svyjdiv( ~eqincome , design = subset( des_eusilc_rep , eqincome > 0 ) ) ## Not run: # linearized design using a variable with missings svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ) ) svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ), na.rm = TRUE ) # replicate-weighted design using a variable with missings svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) ) svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) , na.rm = TRUE ) # database-backed design library(RSQLite) library(DBI) dbfile <- tempfile() conn <- dbConnect( RSQLite::SQLite() , dbfile ) dbWriteTable( conn , 'eusilc' , eusilc ) dbd_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data="eusilc", dbname=dbfile, dbtype="SQLite" ) dbd_eusilc <- convey_prep( dbd_eusilc ) svyjdiv( ~eqincome , design = subset( dbd_eusilc , eqincome > 0 ) ) dbRemoveTable( conn , 'eusilc' ) dbDisconnect( conn , shutdown = TRUE ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.