svyjdiv: J-divergence measure

View source: R/svyjdiv.R

svyjdivR Documentation

J-divergence measure

Description

Estimate the J-divergence measure, an entropy-based measure of inequality

Usage

svyjdiv(formula, design, ...)

## S3 method for class 'survey.design'
svyjdiv(
  formula,
  design,
  na.rm = FALSE,
  deff = FALSE,
  linearized = FALSE,
  influence = FALSE,
  ...
)

## S3 method for class 'svyrep.design'
svyjdiv(
  formula,
  design,
  na.rm = FALSE,
  deff = FALSE,
  linearized = FALSE,
  return.replicates = FALSE,
  ...
)

## S3 method for class 'DBIsvydesign'
svyjdiv(formula, design, ...)

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

future expansion

na.rm

Should cases with missing values be dropped?

deff

Return the design effect (see survey::svymean)

linearized

Should a matrix of linearized variables be returned

influence

Should a matrix of (weighted) influence functions be returned? (for compatibility with svyby)

return.replicates

Return the replicate estimates?

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

This measure only allows for strictly positive variables.

Value

Object of class "cvystat", which are vectors with a "var" attribute giving the variance and a "statistic" attribute giving the name of the statistic.

Author(s)

Guilherme Jacob, Djalma Pessoa, and Anthony Damico

References

Nicholas Rohde (2016). J-divergence measurements of economic inequality. J. R. Statist. Soc. A, v. 179, Part 3 (2016), pp. 847-870. DOI \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/rssa.12153")}.

Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.

See Also

svygei

Examples

library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)

svyjdiv( ~eqincome , design = subset( des_eusilc , eqincome > 0 ) )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)

svyjdiv( ~eqincome , design = subset( des_eusilc_rep , eqincome > 0 ) )

## Not run: 

# linearized design using a variable with missings
svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ) )
svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ), na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) )
svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) , na.rm = TRUE )

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 ,
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)

dbd_eusilc <- convey_prep( dbd_eusilc )

svyjdiv( ~eqincome , design = subset( dbd_eusilc , eqincome > 0 ) )

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )


## End(Not run)


convey documentation built on Oct. 16, 2024, 5:10 p.m.