Description Usage Arguments Details Value Note Author(s) References See Also Examples
Estimates the group decomposition of the generalized entropy index
1 2 3 4 5 6 7 8 9 10 | svyjdivdec(formula, subgroup, design, ...)
## S3 method for class 'survey.design'
svyjdivdec(formula, subgroup, design, na.rm = FALSE, ...)
## S3 method for class 'svyrep.design'
svyjdivdec(formula, subgroup, design, na.rm = FALSE, ...)
## S3 method for class 'DBIsvydesign'
svyjdivdec(formula, subgroup, design, ...)
|
formula |
a formula specifying the income variable |
subgroup |
a formula specifying the group variable |
design |
a design object of class |
... |
future expansion |
na.rm |
Should cases with missing values be dropped? Observations containing missing values in income or group variables will be dropped. |
you must run the convey_prep
function on your survey design object immediately after creating it with the svydesign
or svrepdesign
function.
This measure only allows for strictly positive variables.
Object of class "cvydstat
", which are vectors with a "var
" attribute giving the variance-covariance matrix and a "statistic
" attribute giving the name of the statistic.
This function is experimental and is subject to change in later versions.
Guilherme Jacob, Djalma Pessoa and Anthony Damico
Anthony F. Shorrocks (1984). Inequality decomposition by population subgroups. Econometrica, v. 52, n. 6, 1984, pp. 1369-1385. URL http://www.jstor.org/stable/1913511.
Nicholas Rohde (2016). J-divergence measurements of economic inequality. J. R. Statist. Soc. A, v. 179, Part 3 (2016), pp. 847-870. URL http://onlinelibrary.wiley.com/doi/10.1111/rssa.12153/abstract.
Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)
# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)
# linearized design
svyjdivdec( ~eqincome , ~rb090 , subset(des_eusilc, eqincome > 0) )
# replicate-weighted design
svyjdivdec( ~eqincome , ~rb090 , subset(des_eusilc_rep, eqincome > 0) )
## Not run:
# linearized design using a variable with missings
sub_des_eusilc <- subset(des_eusilc, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc , na.rm = TRUE )
# replicate-weighted design using a variable with missings
sub_des_eusilc_rep <- subset(des_eusilc_rep, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc_rep )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc_rep , na.rm = TRUE )
# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )
dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)
dbd_eusilc <- convey_prep( dbd_eusilc )
# database-backed linearized design
svyjdivdec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) )
# database-backed linearized design using a variable with missings
sub_dbd_eusilc <- subset(dbd_eusilc, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_dbd_eusilc )
svyjdivdec( ~py010n , ~rb090 , sub_dbd_eusilc , na.rm = TRUE )
dbRemoveTable( conn , 'eusilc' )
dbDisconnect( conn , shutdown = TRUE )
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.