svyjdivdec: J-Divergence Decomposition (EXPERIMENTAL) In convey: Income Concentration Analysis with Complex Survey Samples

 svyjdivdec R Documentation

J-Divergence Decomposition (EXPERIMENTAL)

Description

Estimates the group decomposition of the generalized entropy index

Usage

```svyjdivdec(formula, subgroup, design, ...)

## S3 method for class 'survey.design'
svyjdivdec(formula, subgroup, design, na.rm = FALSE, ...)

## S3 method for class 'svyrep.design'
svyjdivdec(formula, subgroup, design, na.rm = FALSE, ...)

## S3 method for class 'DBIsvydesign'
svyjdivdec(formula, subgroup, design, ...)
```

Arguments

 `formula` a formula specifying the income variable `subgroup` a formula specifying the group variable `design` a design object of class `survey.design` or class `svyrep.design` from the `survey` library. `...` future expansion `na.rm` Should cases with missing values be dropped? Observations containing missing values in income or group variables will be dropped.

Details

you must run the `convey_prep` function on your survey design object immediately after creating it with the `svydesign` or `svrepdesign` function.

This measure only allows for strictly positive variables.

Value

Object of class "`cvydstat`", which are vectors with a "`var`" attribute giving the variance-covariance matrix and a "`statistic`" attribute giving the name of the statistic.

Note

This function is experimental and is subject to change in later versions.

Author(s)

Guilherme Jacob, Djalma Pessoa and Anthony Damico

References

Anthony F. Shorrocks (1984). Inequality decomposition by population subgroups. Econometrica, v. 52, n. 6, 1984, pp. 1369-1385. URL https://www.jstor.org/stable/1913511.

Nicholas Rohde (2016). J-divergence measurements of economic inequality. J. R. Statist. Soc. A, v. 179, Part 3 (2016), pp. 847-870. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12153.

Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.

See Also

`svyjdiv`

Examples

```library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)

# linearized design
svyjdivdec( ~eqincome , ~rb090 , subset(des_eusilc, eqincome > 0) )

# replicate-weighted design
svyjdivdec( ~eqincome , ~rb090 , subset(des_eusilc_rep, eqincome > 0) )

## Not run:

# linearized design using a variable with missings
sub_des_eusilc <- subset(des_eusilc, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc , na.rm = TRUE )

# replicate-weighted design using a variable with missings
sub_des_eusilc_rep <- subset(des_eusilc_rep, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc_rep )
svyjdivdec( ~py010n , ~rb090 , sub_des_eusilc_rep , na.rm = TRUE )

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
svydesign(
ids = ~rb030 ,
strata = ~db040 ,
weights = ~rb050 ,
data="eusilc",
dbname=dbfile,
dbtype="SQLite"
)

dbd_eusilc <- convey_prep( dbd_eusilc )

# database-backed linearized design
svyjdivdec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) )

# database-backed linearized design using a variable with missings
sub_dbd_eusilc <- subset(dbd_eusilc, py010n > 0 | is.na(py010n) )
svyjdivdec( ~py010n , ~rb090 , sub_dbd_eusilc )
svyjdivdec( ~py010n , ~rb090 , sub_dbd_eusilc , na.rm = TRUE )

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )

## End(Not run)

```

convey documentation built on April 28, 2022, 1:06 a.m.