svyfgtdec: FGT indices decomposition (EXPERIMENTAL)

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/svyfgtdec.R

Description

Estimate the Foster et al. (1984) poverty class and its components

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
svyfgtdec(formula, design, ...)

## S3 method for class 'survey.design'
svyfgtdec(
  formula,
  design,
  g,
  type_thresh = "abs",
  abs_thresh = NULL,
  percent = 0.6,
  quantiles = 0.5,
  na.rm = FALSE,
  thresh = FALSE,
  ...
)

## S3 method for class 'svyrep.design'
svyfgtdec(
  formula,
  design,
  g,
  type_thresh = "abs",
  abs_thresh = NULL,
  percent = 0.6,
  quantiles = 0.5,
  na.rm = FALSE,
  thresh = FALSE,
  ...
)

## S3 method for class 'DBIsvydesign'
svyfgtdec(formula, design, ...)

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

additional arguments. Currently not used.

g

If g=2 estimates the average squared normalised poverty gap. This function is defined for g >= 2 only,

type_thresh

type of poverty threshold. If "abs" the threshold is fixed and given the value of abs_thresh; if "relq" it is given by percent times the quantile; if "relm" it is percent times the mean.

abs_thresh

poverty threshold value if type_thresh is "abs"

percent

the multiple of the the quantile or mean used in the poverty threshold definition

quantiles

the quantile used used in the poverty threshold definition

na.rm

Should cases with missing values be dropped?

thresh

return the poverty threshold value

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

Value

Object of class "cvydstat", with estimates for the FGT(g), FGT(0), FGT(1), income gap ratio and GEI(income gaps; epsilon = g) with a "var" attribute giving the variance-covariance matrix. A "statistic" attribute giving the name of the statistic.

Note

This function is experimental and is subject to change in later versions.

Author(s)

Guilherme Jacob, Djalma Pessoa and Anthony Damico

References

Oihana Aristondo, Cassilda Lasso De La vega and Ana Urrutia (2010). A new multiplicative decomposition for the Foster-Greer-Thorbecke poverty indices. Bulletin of Economic Research, Vol.62, No.3, pp. 259-267. University of Wisconsin. URL http://dx.doi.org/10.1111/j.1467-8586.2009.00320.x.

James Foster, Joel Greer and Erik Thorbecke (1984). A class of decomposable poverty measures. Econometrica, Vol.52, No.3, pp. 761-766.

Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL http://ojs.ub.uni-konstanz.de/srm/article/view/369.

Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203, URL http://www5.statcan.gc.ca/bsolc/olc-cel/olc-cel?lang=eng&catno=12-001-X19990024882.

See Also

svyfgt,svyfgt,svyfgt

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design

des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )

# absolute poverty threshold
svyfgtdec(~eqincome, des_eusilc, g=2, abs_thresh=10000)
# poverty threshold equal to arpt
svywattsdec(~eqincome, des_eusilc, g=2, type_thresh= "relq" , thresh = TRUE)
# poverty threshold equal to 0.6 times the mean
svywattsdec(~eqincome, des_eusilc, g=2, type_thresh= "relm" , thresh = TRUE)

# using svrep.design:
# absolute poverty threshold
svyfgtdec(~eqincome, des_eusilc_rep, g=2, abs_thresh=10000)
# poverty threshold equal to arpt
svywattsdec(~eqincome, des_eusilc_rep, g=2, type_thresh= "relq" , thresh = TRUE)
# poverty threshold equal to 0.6 times the mean
svywattsdec(~eqincome, des_eusilc_rep, g=2, type_thresh= "relm" , thresh = TRUE)

## Not run: 

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 ,
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)


dbd_eusilc <- convey_prep( dbd_eusilc )


# absolute poverty threshold
svyfgtdec(~eqincome, dbd_eusilc, g=2, abs_thresh=10000)
# poverty threshold equal to arpt
svywattsdec(~eqincome, dbd_eusilc, g=2, type_thresh= "relq" , thresh = TRUE)
# poverty threshold equal to 0.6 times the mean
svywattsdec(~eqincome, dbd_eusilc, g=2, type_thresh= "relm" , thresh = TRUE)

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )


## End(Not run)

convey documentation built on July 1, 2020, 11:44 p.m.