Nothing
require(copula) set.seed(271)
First, let's fix some parameters.
mu <- 0 sigma <- 1 df <- 3 alpha <- 10
For the marginals, we will use location scale transformed Student distributions.
rtls <- function(n, df, mu, sigma) sigma * rt(n,df) + mu ptls <- function(x, df, mu, sigma) pt((x - mu)/sigma,df) qtls <- function(u, df, mu, sigma) sigma * qt(u,df) + mu dtls <- function(u, df, mu, sigma) dt((x - mu)/sigma,df)/sigma
Let's generate some data.
rclayton <- function(n, alpha) { u <- runif(n+1) # innovations v <- u for(i in 2:(n+1)) v[i] <- ((u[i]^(-alpha/(1+alpha)) -1)*v[i-1]^(-alpha) +1)^(-1/alpha) v[2:(n+1)] } n <- 200 u <- rclayton(n, alpha = alpha) u <- qtls(u, df=df, mu=mu, sigma=sigma) y <- u[-n] x <- u[-1]
We now estimate the parameters under known marginals
fitCopula(claytonCopula(dim=2), cbind(ptls(x,df,mu,sigma), ptls(y,df,mu,sigma)))
## Identical margins M2tlsI <- mvdc(claytonCopula(dim=2), c("tls","tls"), rep(list(list(df=NA, mu=NA, sigma=NA)), 2), marginsIdentical= TRUE) (fit.id.mar <- fitMvdc(cbind(x,y), M2tlsI, start=c(3,1,1, 10))) ## Not necessarily identical margins M2tls <- mvdc(claytonCopula(dim=2), c("tls","tls"), rep(list(list(df=NA, mu=NA, sigma=NA)), 2)) fitMvdc(cbind(x,y), M2tls, start=c(3,1,1, 3,1,1, 10))
u.cond <- function(z, tau, df, mu, sigma, alpha) ((tau^(-alpha/(1+alpha)) -1) * ptls(z,df,mu,sigma)^(-alpha) + 1) ^ (-1/alpha) y.cond <- function(z, tau, df, mu, sigma, alpha) { u <- u.cond(z, tau, df, mu, sigma, alpha) qtls(u, df=df, mu=mu, sigma=sigma) } plot(x, y) title("True and estimated conditional quantile functions") mtext(quote("for" ~~ tau == (1:5)/6)) z <- seq(min(y),max(y),len = 60) for(i in 1:5) { tau <- i/6 lines(z, y.cond(z, tau, df,mu,sigma, alpha)) ## and compare with estimate: b <- fit.id.mar@estimate lines(z, y.cond(z, tau, df=b[1], mu=b[2], sigma=b[3], alpha=b[4]), col="red") }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.