# corKendall: (Fast) Computation of Pairwise Kendall's Taus In copula: Multivariate Dependence with Copulas

 corKendall R Documentation

## (Fast) Computation of Pairwise Kendall's Taus

### Description

For a data matrix `x`, compute the Kendall's tau “correlation” matrix, i.e., all pairwise Kendall's taus between the columns of `x`.

By default and when `x` has no missing values (`NA`s), the fast O(n log(n)) algorithm of `cor.fk()` is used.

### Usage

```corKendall(x, checkNA = TRUE,
use = if(checkNA && anyNA(x)) "pairwise" else "everything")
```

### Arguments

 `x` data, a n x p matrix (or less efficiently a data.frame), or a numeric vector which is treated as n x 1 matrix. `checkNA` logical indicating if `x` should be checked for `NA`s and in the case of NA's and when `use` is not specified (`missing`), ```cor(*, use = "pairwise")``` should be used. Note that ```corKendall(x, checkNA = FALSE)``` will produce an error when `x` has NA's. `use` a string to determine the treatment of `NA`s in `x`, see `cor`; its default determined via `checkNA`. When this differs from `"everything"`, R's `cor` is used; otherwise pcaPP's `cor.fk()` which cannot deal with `NA`s.

### Value

The p x p matrix K of pairwise Kendall's taus, with `K[i,j] := tau(x[,i], x[,j])`.

`cor.fk()` from pcaPP (used by default when there are no missing values (`NA`s) in `x`).

`etau()` or `fitCopula(*, method = "itau")` make use of `corKendall()`.

### Examples

```## If there are no NA's, corKendall() is faster than cor(*, "kendall")
## and gives the same :

system.time(C1 <- cor(swiss, method="kendall"))
system.time(C2 <- corKendall(swiss))
stopifnot(all.equal(C1, C2,  tol = 1e-5))

## In the case of missing values (NA), corKendall() reverts to
## cor(*, "kendall", use = "pairwise") {no longer very fast} :

swM <- swiss # shorter names and three missings:
colnames(swM) <- abbreviate(colnames(swiss), min=6)
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA
(C3 <- corKendall(swM)) # now automatically uses the same as
stopifnot(identical(C3, cor(swM, method="kendall", use="pairwise")))
## and is quite close to the non-missing "truth":
stopifnot(all.equal(unname(C3), unname(C2), tol = 0.06)) # rel.diff.= 0.055

try(corKendall(swM, checkNA=FALSE)) # --> Error
## the error is really from  pcaPP::cor.fk(swM)
```

copula documentation built on June 15, 2022, 5:07 p.m.