Nothing
source(system.file("Rsource", "GIG.R", package="copula"))## ../inst/Rsource/GIG.R require(copula) require(bbmle) require(lattice) require(grid) source(system.file("Rsource", "utils.R", package="copula", mustWork=TRUE))##-> showProc.time() .. doPDF <- FALSE ## set 'do.profile' below -- *visibly*
##' Initial interval for GIG ##' @title Initial interval for GIG ##' @param U (n x d)-matrix of simulated data ##' @param h non-negative auxiliary parameter for computing initial intervals ##' @param method "etau" via sample version of Kendall's tau ##' "dmle.G" via DMLE of Gumbel ##' @return (2 x 2)-matrix containing the initial interval [1st row: lower, ##' 2nd row: upper; 2 parameters => 2 cols] ##' @author Marius Hofert ii.GIG <- function(U, h, method=c("etau","dmle.G")){ stopifnot(h >= 0, length(h) >= 2) I <- matrix(, nrow=2, ncol=2, dimnames=list(c("lower", "upper"), c("nu", "theta"))) ## estimate Kendall's tau method <- match.arg(method) tau.hat <- switch(method, "etau" = { # uses sample version of tau, more accurate but slower tau.hat.mat <- cor(U, method="kendall") mean(tau.hat.mat[upper.tri(tau.hat.mat)]) }, "dmle.G" = { # uses DMLE for Gumbel to estimate tau Z <- apply(U, 1, max) theta.hat.G <- log(ncol(U))/(log(length(Z))-log(sum(-log(Z)))) copGumbel@tau(theta.hat.G) }, stop("wrong method:", method)) ## compute largest value of theta (for upper left endpoint of the inital interval) stopifnot(tau.hat > 0) nu.min <- 0 I[1,1] <- nu.min # smallest value for nu th.max <- iTau.GIG(max(tau.hat-h[1],0.005), theta=c(nu.min, NA)) I[2,2] <- th.max[2] # largest value for theta ## compute smallest theta (for lower left endpoint of the inital interval) th.min <- iTau.GIG(min(tau.hat+h[2],0.995), theta=c(nu.min, NA)) # largest attainable tau with 1e-30 is one.m.eps=0.9602 I[1,2] <- th.min[2] ## compute largest nu (for lower right endpoint of the inital interval) nu.max <- iTau.GIG(max(tau.hat-h[1],0.005), theta=c(NA, th.min[2])) I[2,1] <- nu.max[1] ## result I }
##' -log-likelihood ##' @title -log-likelihood ##' @param nu parameter of the generator/copula ##' @param theta parameter of the generator/copula ##' @param u (n x d)-matrix of simulated data ##' @return -sum(log(density)) ##' @author Marius Hofert nlogl.GIG <- function(nu, theta, u){ if(!is.matrix(u)) u <- rbind(u) if((d <- ncol(u)) < 2) stop("u should be at least bivariate") # check that d >= 2 -sum(dacopula.GIG(u, theta=c(nu, theta), n.MC=0, log=TRUE)) } nlogl.GIG. <- function(theta, u) nlogl.GIG(theta[1], theta=theta[2], u=u) # vectorized version
Note: The GIG family is two-parametric.
th1 <- c(0, 0.1, 0.5, 1, 5, 10) cols <- colorRampPalette(c("red", "orange", "darkgreen", "turquoise", "blue"), space="Lab")(length(th1)) par(pty="s") for(i in seq_along(th1)) curve(tau.GIG(cbind(th1[i],x)), 1e-12, 2, main="Kendall's tau for the GIG family", ylim=c(0,1), xlab=expression(theta), ylab=expression(tau(nu,theta)), add=(i>1), lwd=1.4, col=cols[i]) label <- as.expression(lapply(1:length(th1), function(i) substitute(nu==nu., list(nu.=th1[i])))) legend("topright", label, bty="n", lwd=1.4, col=cols)
Let's specify some parameters.
n <- 100 # sample size d <- 10 # dimension nu <- 0.2 # fix nu tau <- 0.5 # => psi(t)=(1+t)^(-nu/2)besselK(theta*sqrt(1+t), nu=nu)/besselK(theta, nu=nu) with (nu, theta)=(0.2, 0.0838) h <- c(0.15, 0.15) # h_-, h_+ (for initial value)
theta <- iTau.GIG(tau, c(nu, NA)) # determine theta such that tau is matched (for given nu) set.seed(1000) U <- rnacopula.GIG(n, d, theta) par(pty="s") splom2(U, cex=0.4, pscales=0, main=paste("Sample of size",n, "from a GIG copula"))
I <- ii.GIG(U, h) start <- colMeans(I) # initial interval ## 1) Without profiling: optim with method="L-BFGS-B" if(FALSE) # << don't do it if won't look at it -- takes ca. 16.5 sec system.time(optim(par=start, method="L-BFGS-B", fn=function(x) nlogl.GIG(x[1], theta=x[2], u=U), lower=c(I[1,1], I[1,2]), upper=c(I[2,1], I[2,2]))) ## 2) With profiling: via mle (uses optimizer="optim" with method="L-BFGS-B") nLL <- function(nu, theta) nlogl.GIG(nu, theta, u=U) system.time(ml <- mle(nLL, method="L-BFGS-B", start=list(nu=mean(I[,1]), theta=mean(I[,2])), lower=c(nu=I[1,1], theta=I[1,2]), upper=c(nu=I[2,1], theta=I[2,2]))) summary(ml) str(ml@details) ## 3) With profiling: via mle2 (uses optimizer="optim" with method="L-BFGS-B") system.time(ml2 <- mle2(nlogl.GIG, data=list(u=U), method="L-BFGS-B", start=list(nu=mean(I[,1]), theta=mean(I[,2])), lower=c(nu=I[1,1], theta=I[1,2]), upper=c(nu=I[2,1], theta=I[2,2]))) summary(ml2) str(ml2@details)
do.profile <- FALSE # set this to TRUE to compute profile-likelihood plots (time-consuming) if(do.profile){ system.time(prof <- profile(ml)) if(FALSE) { ## FIXME (?) ## maybe this helps: https://stat.ethz.ch/pipermail/r-help/2005-July/076003.html ci <- confint(prof) ci plot(prof) } system.time(prof2 <- profile(ml2)) # profiling (time-consuming) (ci <- confint(prof2)) plot(prof2) # => for adjusting stepsize etc., see ?profile.mle2 } showProc.time()
## Build grid m <- 20 # number of grid points = number of intervals + 1 th <- seq(I[1,1], I[2,1], length.out=m) # grid points for nu beta <- seq(I[1,2], I[2,2], length.out=m) # grid points for theta grid <- expand.grid(theta=th, beta=beta) # grid base.saveF <- "GIG_vign-nlogl-gr.rds" saveF <- system.file("rData", base.saveF, package = "copula") if(nzchar(saveF) && file.exists(saveF)) { # save time, also on CRAN val.grid <- readRDS(saveF) } else { ## takes around 45 sec print(system.time( ## val.grid := values of the -log-likelihood on the grid val.grid <- apply(grid, 1, nlogl.GIG., u=U) )) saveF <- file.path(if(dir.exists(sd <- "~/R/Pkgs/copula/inst/rData")) sd else tempdir(), base.saveF) saveRDS(val.grid, file = saveF) cat("saved to saveFile = ", dQuote(saveF), "\n") } showProc.time()
true.theta <- theta true.val <- c(true.theta, nlogl.GIG.(true.theta, u=U)) # theoretical optimum opt <- ml@coef # optimizer-optimum opt.val <- c(opt, nlogl.GIG.(opt, u=U)) # optimizer-optimum and its value pts <- rbind(true.val, opt.val) # points to add to wireframe plot title <- "-log-likelihood of an Archimedean GIG copula" # title sub <- substitute(italic(n) == N ~~~ italic(d)== D ~~~ tau == TAU ~~~ "#{eval}:" ~ NIT, list(N=n, D=d, TAU= tau, NIT= ml@details$counts[[1]])) sub <- as.expression(sub) # lattice bug wireframe(val.grid ~ grid[,1] * grid[,2], screen=list(z=70, x=-55), zoom=0.95, xlab = expression(italic(theta)), ylab = expression(italic(beta)), zlab = list(as.expression(-log~L * group("(",list(theta,beta),")")), rot=90), main=title, sub=sub, pts=pts, scales=list(col=1, arrows=FALSE), par.settings=list(axis.line=list(col="transparent"), clip=list(panel="off")), zlim=c(min(val.grid, pts[,3]), max(val.grid, pts[,3])), aspect=1, panel.3d.wireframe = function(x,y,z,xlim,ylim,zlim,xlim.scaled, ylim.scaled,zlim.scaled,pts,...) { panel.3dwire(x=x, y=y, z=z, xlim=xlim, ylim=ylim, zlim=zlim, xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled, zlim.scaled=zlim.scaled, alpha.regions=0.8, ...) panel.3dscatter(x=pts[,1], y=pts[,2], z=pts[,3], xlim=xlim, ylim=ylim, zlim=zlim, xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled, zlim.scaled=zlim.scaled, type="p", col=c("red","blue"), pch=c(3,4), lex=2, cex=1.4, .scale=TRUE, ...) }, key = list(x=0.64, y=1.01, points = list(pch=c(3,4), col=c("red","blue"), lwd=2, cex=1.4), text = list(c("True value", "Optimum of optimizer")), padding.text=3, cex=1, align=TRUE, transparent=TRUE))
xlim. <- c(min(grid[,1]),max(grid[,1])) ylim. <- c(min(grid[,2]),max(grid[,2])) xeps <- (xlim.[2] - xlim.[1]) * 0.04 yeps <- (ylim.[2] - ylim.[1]) * 0.04 cols <- adjustcolor(colorRampPalette(c("darkgreen", "green", "orange", "yellow"), space="Lab")(100), 0.8) levelplot(val.grid ~ grid[,1] * grid[,2], par.settings = list(layout.heights=list(main=3, sub=2), regions=list(col=cols)), xlim = c(xlim.[1]-xeps, xlim.[2]+xeps), ylim = c(ylim.[1]-yeps, ylim.[2]+yeps), xlab = expression(italic(theta)), ylab=expression(italic(beta)), main=title, sub=sub, pts=pts, aspect=1, scales=list(alternating=c(1,1), tck=c(1,0)), contour=TRUE, panel = function(x, y, z, pts, ...) { panel.levelplot(x=x, y=y, z=z, ...) grid.points(x=pts[1,1], y=pts[1,2], pch=3, gp=gpar(lwd=2, col="red")) # + true value grid.points(x=pts[2,1], y=pts[2,2], pch=4, gp=gpar(lwd=2, col="blue")) # x optimum }, key = list(x=0.18, y=1.08, points = list(pch=c(3,4), col=c("red","blue"), lwd=2, cex=1.4), columns=2, text = list(c("True value", "Optimum of optimizer")), align=TRUE, transparent=TRUE)) showProc.time()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.