require(copula) doExtras <- FALSE
This vignette visualizes (log) likelihood functions of Archimedean copulas,
some of which are numerically challenging to compute.
Because of this computational challenge, we also check for equivalence of
some of the several computational methods, testing for numerical
near-equality using all.equal(L1, L2)
.
We start by defining the following auxiliary functions.
##' @title [m]inus Log-Likelihood for Archimedean Copulas ("fast version") ##' @param theta parameter (length 1 for our current families) ##' @param acop Archimedean copula (of class "acopula") ##' @param u data matrix n x d ##' @param n.MC if > 0 MC is applied with sample size equal to n.MC; otherwise, ##' the exact formula is used ##' @param ... potential further arguments, passed to <acop> @dacopula() ##' @return negative log-likelihood ##' @author Martin Maechler (Marius originally) mLogL <- function(theta, acop, u, n.MC=0, ...) { # -(log-likelihood) -sum(acop@dacopula(u, theta, n.MC=n.MC, log=TRUE, ...)) }
##' @title Plotting the Negative Log-Likelihood for Archimedean Copulas ##' @param cop an outer_nacopula (currently with no children) ##' @param u n x d data matrix ##' @param xlim x-range for curve() plotting ##' @param main title for curve() ##' @param XtrArgs a list of further arguments for mLogL() ##' @param ... further arguments for curve() ##' @return invisible() ##' @author Martin Maechler curveLogL <- function(cop, u, xlim, main, XtrArgs=list(), ...) { unam <- deparse(substitute(u)) stopifnot(is(cop, "outer_nacopula"), is.list(XtrArgs), (d <- ncol(u)) >= 2, d == dim(cop), length(cop@childCops) == 0# not yet *nested* A.copulas ) acop <- cop@copula th. <- acop@theta # the true theta acop <- setTheta(acop, NA) # so it's clear, the true theta is not used below if(missing(main)) { tau. <- cop@copula@tau(th.) main <- substitute("Neg. Log Lik."~ -italic(l)(theta, UU) ~ TXT ~~ FUN(theta['*'] == Th) %=>% tau['*'] == Tau, list(UU = unam, TXT= sprintf("; n=%d, d=%d; A.cop", nrow(u), d), FUN = acop@name, Th = format(th.,digits=3), Tau = format(tau., digits=3))) } r <- curve(do.call(Vectorize(mLogL, "theta"), c(list(x, acop, u), XtrArgs)), xlim=xlim, main=main, xlab = expression(theta), ylab = substitute(- log(L(theta, u, ~~ COP)), list(COP=acop@name)), ...) if(is.finite(th.)) axis(1, at = th., labels=expression(theta["*"]), lwd=2, col="dark gray", tck = -1/30) else warning("non-finite cop@copula@theta = ", th.) axis(1, at = initOpt(acop@name), labels = FALSE, lwd = 2, col = 2, tck = 1/20) invisible(r) }
Ensure that we are told about it, if the numerical algorithms choose
methods using Rmpfr
(R package interfacing to multi precision arithmetic MPFR):
op <- options("copula:verboseUsingRmpfr"=TRUE) # see when "Rmpfr" methods are chosen automatically
n <- 200 d <- 100 tau <- 0.2 theta <- copJoe@iTau(tau) cop <- onacopulaL("Joe", list(theta,1:d)) theta
Here, the three different methods work "the same":
set.seed(1) U1 <- rnacopula(n,cop) enacopula(U1, cop, "mle") # 1.432885 -- fine th4 <- 1 + (1:4)/4 mL.tr <- c(-3558.5, -3734.4, -3299.5, -2505.) mLt1 <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="log.poly")) # default mLt2 <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="log1p")) mLt3 <- sapply(th4, function(th) mLogL(th, cop@copula, U1, method="poly")) stopifnot(all.equal(mLt1, mL.tr, tolerance=5e-5), all.equal(mLt2, mL.tr, tolerance=5e-5), all.equal(mLt3, mL.tr, tolerance=5e-5)) system.time(r1l <- curveLogL(cop, U1, c(1, 2.5), X=list(method="log.poly"))) mtext("all three polyJ() methods on top of each other") system.time({ r1J <- curveLogL(cop, U1, c(1, 2.5), X=list(method="poly"), add=TRUE, col=adjustcolor("red", .4)) r1m <- curveLogL(cop, U1, c(1, 2.5), X=list(method="log1p"), add=TRUE, col=adjustcolor("blue",.5)) })
U2 <- rnacopula(n,cop) summary(dCopula(U2, cop)) # => density for the *correct* parameter looks okay ## hmm: max = 5.5e177 if(doExtras) system.time(r2 <- curveLogL(cop, U2, c(1, 2.5))) stopifnot(all.equal(enacopula(U2, cop, "mle"), 1.43992755, tolerance=1e-5), all.equal(mLogL(1.8, cop@copula, U2), -4070.1953,tolerance=1e-5)) # (was -Inf)
U3 <- rnacopula(n,cop) (th. <- enacopula(U3, cop, "mle")) # 1.4495 system.time(r3 <- curveLogL(cop, U3, c(1, 2.5))) axis(1, at = th., label = quote(hat(theta)))
U4 <- rnacopula(n,cop) enacopula(U4, cop, "mle") # 1.4519 (prev. was 2.351 : "completely wrong") summary(dCopula(U4, cop)) # ok (had one Inf) if(doExtras) system.time(r4 <- curveLogL(cop, U4, c(1, 2.5))) mLogL(2.2351, cop@copula, U4) mLogL(1.5, cop@copula, U4) mLogL(1.2, cop@copula, U4) if(doExtras) # each curve takes almost 2 sec system.time({ curveLogL(cop, U4, c(1, 1.01)) curveLogL(cop, U4, c(1, 1.0001)) curveLogL(cop, U4, c(1, 1.000001)) }) ## --> limit goes *VERY* steeply up to 0 ## --> theta 1.164 is about the boundary: stopifnot(identical(setTheta(cop, 1.164), onacopula(cop@copula, C(1.164, 1:100))), all.equal(600.59577, cop@copula@dacopula(U4[118,,drop=FALSE], theta=1.164, log = TRUE), tolerance=1e-5)) # was "Inf"
n <- 200 d <- 150 tau <- 0.3 (theta <- copJoe@iTau(tau)) cop <- onacopulaL("Joe",list(theta,1:d))
set.seed(47) U. <- rnacopula(n,cop) enacopula(U., cop, "mle") # 1.784578 system.time(r. <- curveLogL(cop, U., c(1.1, 3))) ## => still looks very good
d <- 180 tau <- 0.4 (theta <- copJoe@iTau(tau)) cop <- onacopulaL("Joe",list(theta,1:d))
U. <- rnacopula(n,cop) enacopula(U., cop, "mle") # 2.217582 if(doExtras) system.time(r. <- curveLogL(cop, U., c(1.1, 4))) ## => still looks very good
n <- 200 d <- 50 # smaller 'd' -- so as to not need 'Rmpfr' here tau <- 0.2 (theta <- copGumbel@iTau(tau)) cop <- onacopulaL("Gumbel",list(theta,1:d))
set.seed(1) U1 <- rnacopula(n,cop) if(doExtras) { U2 <- rnacopula(n,cop) U3 <- rnacopula(n,cop) } enacopula(U1, cop, "mle") # 1.227659 (was 1.241927) ##--> Plots with "many" likelihood evaluations system.time(r1 <- curveLogL(cop, U1, c(1, 2.1))) if(doExtras) system.time({ mtext("and two other generated samples") r2 <- curveLogL(cop, U2, c(1, 2.1), add=TRUE) r3 <- curveLogL(cop, U3, c(1, 2.1), add=TRUE) })
d <- 150 tau <- 0.6 (theta <- copGumbel@iTau(tau)) cG.5 <- onacopulaL("Gumbel",list(theta,1:d))
set.seed(17) U4 <- rnacopula(n,cG.5) U5 <- rnacopula(n,cG.5) U6 <- rnacopula(n,cG.5) if(doExtras) { ## "Rmpfr" is used {2012-06-21}: -- therefore about 18 seconds! tol <- if(interactive()) 1e-12 else 1e-8 print(system.time( ee. <- c(enacopula(U4, cG.5, "mle", tol=tol), enacopula(U5, cG.5, "mle", tol=tol), enacopula(U6, cG.5, "mle", tol=tol)))) dput(ee.)# in case the following fails ## tol=1e-12 Linux nb-mm3 3.2.0-25-generic x86_64 (2012-06-23): ## c(2.47567251789004, 2.48424484287686, 2.50410767129408) ## c(2.475672518, 2.484244763, 2.504107671), stopifnot(all.equal(ee., c(2.475672518, 2.484244763, 2.504107671), tolerance= max(1e-7, 16*tol))) } ## --> Plots with "many" likelihood evaluations th. <- seq(1, 3, by= 1/4) if(doExtras) # "default2012" (polyG default) partly uses Rmpfr here: system.time(r4 <- sapply(th., mLogL, acop=cG.5@copula, u=U4))## 25.6 sec ## whereas this (polyG method) is very fast {and still ok}: system.time(r4.p <- sapply(th., mLogL, acop=cG.5@copula, u=U4, method="pois")) r4. <- c(0, -18375.33, -21948.033, -24294.995, -25775.502, -26562.609, -26772.767, -26490.809, -25781.224) stopifnot(!doExtras || all.equal(r4, r4., tolerance = 8e-8), all.equal(r4.p, r4., tolerance = 8e-8)) ## --> use fast method here as well: system.time(r5.p <- sapply(th., mLogL, acop=cG.5@copula, u=U5, method="pois")) system.time(r6.p <- sapply(th., mLogL, acop=cG.5@copula, u=U6, method="pois")) if(doExtras) { if(FALSE) # for speed analysis, etc debug(copula:::polyG) mLogL(1.65, cG.5@copula, U4) # -23472.96 } dd <- dCopula(U4, setTheta(cG.5, 1.64), log = TRUE, method = if(doExtras)"default" else "pois") summary(dd) stopifnot(!is.na(dd), # no NaN's anymore 40 < range(dd), range(dd) < 710)
n <- 64 d <- 5 tau <- 0.8 (theta <- copFrank@iTau(tau)) cop <- onacopulaL("Frank", list(theta,1:d))
set.seed(11) # these seeds give no problems: 101, 41, 21 U. <- rnacopula(n,cop) cop@copula <- setTheta(cop@copula, NA) # forget the true theta system.time(f.ML <- emle(U., cop)); f.ML # --> fine: theta = 18.033, Log-lik = 314.01 if(doExtras) system.time(f.mlMC <- emle(U., cop, n.MC = 1e4)) # with MC stopifnot(all.equal(unname(coef(f.ML)), 18.03331, tolerance= 1e-6), all.equal(f.ML@min, -314.0143, tolerance=1e-6), !doExtras || ## Simulate MLE (= SMLE) is "extra" random, hmm... all.equal(unname(coef(f.mlMC)), 17.8, tolerance= 0.01) ## 64-bit ubuntu: 17.817523 ## ? 64-bit Mac: 17.741 ) cop@copula <- setTheta(cop@copula, theta) r. <- curveLogL(cop, U., c(1, 200)) # => now looks fine tail(as.data.frame(r.), 15) stopifnot( is.finite( r.$y ), ## and is convex (everywhere): diff(r.$y, d=2) > 0) options(op) # revert to previous state
print(sessionInfo(), locale=FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.