Description Usage Arguments Details Value References See Also Examples
Run hierarchical clustering on a set of crimes using the log Bayes Factor as the similarity metric.
1 2 | crimeClust_hier(crimedata, varlist, estimateBF, linkage = c("average",
"single", "complete"), ...)
|
crimedata |
data.frame of crime incidents. Must contain a column named
|
varlist |
a list of the variable names (columns of |
estimateBF |
function to estimate the log bayes factor from evidence variables |
linkage |
the type of linkage for hierarchical clustering
|
... |
other arguments passed to |
This function first compares all crime pairs using compareCrimes,
then uses estimateBF to estimate the log Bayes factor for every pair.
Next, it passes this information into hclust to carry out the
agglomerative hierarchical clustering. Because hclust requires
a dissimilarity, this uses the negative log Bayes factor.
The input varlist is a list with elements named: crimeID, spatial,
temporal, categorical, and numerical. Each element should be a vector of
the column names of crimedata corresponding to that feature. See
compareCrimes for more details.
An object of class hclust (from hclust).
Porter, M. D. (2014). A Statistical Approach to Crime Linkage. arXiv preprint arXiv:1410.2285.. http://arxiv.org/abs/1410.2285
1 2 3 4 5 6 7 8 9 10 | data(crimes)
#- cluster the first 10 crime incidents
crimedata = crimes[1:10,]
varlist = list(spatial = c("X", "Y"), temporal = c("DT.FROM","DT.TO"),
categorical = c("MO1", "MO2", "MO3"))
estimateBF <- function(X) rnorm(NROW(X)) # random estimation of log Bayes Factor
HC = crimeClust_hier(crimedata,varlist,estimateBF)
plot_hcc(HC,yticks=-2:2)
# See vignette: "Crime Series Identification and Clustering" for more examples.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.