Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
suppressPackageStartupMessages({
library(crmPack)
library(knitr)
library(kableExtra)
library(tidyr)
library(magrittr)
library(dplyr)
})
## ----error = TRUE-------------------------------------------------------------
try({
CohortSizeConst(size = 3) %>% tidy()
})
## -----------------------------------------------------------------------------
IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)
) %>%
tidy()
## -----------------------------------------------------------------------------
cs_max <- maxSize(
CohortSizeConst(3),
CohortSizeDLT(intervals = 0:1, cohort_size = c(1, 3))
)
cs_max %>% tidy()
## -----------------------------------------------------------------------------
options <- McmcOptions(
burnin = 100,
step = 1,
samples = 2000
)
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))
model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov =
matrix(c(1, -0.5, -0.5, 1),
nrow = 2
),
ref_dose = 56
)
samples <- mcmc(emptydata, model, options)
tidySamples <- samples %>% tidy()
tidySamples %>% head()
## -----------------------------------------------------------------------------
CohortSizeRange(
intervals = c(0, 50, 300),
cohort_size = c(1, 3, 5)
) %>%
tidy() %>%
kable(
col.names = c("Min", "Max", "Cohort size"),
caption = "Rules for selecting the cohort size"
) %>%
add_header_above(c("Dose" = 2, " " = 1))
## ----fig.width = 6, fig.height = 4--------------------------------------------
options <- McmcOptions(
burnin = 5000,
step = 1,
samples = 40000
)
data <- Data(
doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100),
x = c(1, 3, 5, 10, 15, 15, 15),
y = c(0, 0, 0, 0, 0, 1, 0),
ID = 1L:7L,
cohort = as.integer(c(1:4, 5, 5, 5))
)
model <- LogisticLogNormal(
mean = c(-1, 0),
cov =
matrix(c(3, -0.1, -0.1, 4),
nrow = 2
),
ref_dose = 56
)
samples <- mcmc(data, model, options)
tidySamples <- samples %>% tidy()
# The magrittr pipe is necessary here
tidySamples$data %>%
expand(
nesting(!!!.[1:10]),
Dose = data@doseGrid[2:11]
) %>%
mutate(Prob = probFunction(model, alpha0 = alpha0, alpha1 = alpha1)(Dose)) %>%
ggplot() +
geom_density(aes(x = Prob, colour = as.factor(Dose)), adjust = 1.5) +
labs(
title = "Posterior dose-specific PDFs for p(Tox)",
caption = "Dose 1 omitted as p(Tox) is essentially 0",
x = "p(Tox)"
) +
scale_colour_discrete("Dose") +
theme_light() +
theme(
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.