Nothing
h_get_model_4comp <- function() {
list(
priormodel = function() {
y ~ x + 1
},
modelspecs = list(x = 2),
init = list(y = 2),
sample = c("a", "b")
)
}
h_get_general_model <- function() {
.GeneralModel(
datamodel = function(x) {
x
},
priormodel = function(x) {
x
},
modelspecs = function(x) {
x
},
init = function(x) {
x
},
sample = "param1",
datanames = "x"
)
}
h_get_model <- function() {
.GeneralModel(
datamodel = function(x) {
x
},
priormodel = function(x) {
x
},
modelspecs = function(x) {
x
},
init = function(x) {
x
},
sample = "param1",
datanames = "x"
)
}
h_get_model_log_normal <- function() {
ModelLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50
)
}
h_get_logistic_normal <- function() {
LogisticNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50
)
}
h_get_logistic_log_normal <- function() {
LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50
)
}
h_get_logistic_log_normal_sub <- function() {
LogisticLogNormalSub(
mean = c(1, 5),
cov = diag(4, ncol = 2, nrow = 2),
ref_dose = 2
)
}
h_get_probit_log_normal_rel <- function() {
ProbitLogNormalRel(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 2
)
}
h_get_probit_log_normal <- function() {
ProbitLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 7.2
)
}
h_get_logistic_kadane <- function() {
LogisticKadane(
theta = 0.33,
xmin = 1,
xmax = 200
)
}
h_get_logistic_kadane_beta_gam <- function() {
LogisticKadaneBetaGamma(
theta = 0.3,
xmin = 0,
xmax = 7,
alpha = 1,
beta = 19,
shape = 5,
rate = 1
)
}
h_get_logistic_normal_mix <- function() {
LogisticNormalMixture(
comp1 = ModelParamsNormal(mean = c(0, 3), cov = diag(2)),
comp2 = ModelParamsNormal(mean = c(-1, 6), cov = c(2, 4) * diag(2)),
weightpar = c(a = 1, b = 5),
ref_dose = 2
)
}
h_get_logistic_normal_fixed_mix <- function(log_normal = FALSE) {
# nolint
LogisticNormalFixedMixture(
components = list(
comp1 = ModelParamsNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)
),
comp2 = ModelParamsNormal(
mean = c(1, 1.5),
cov = matrix(c(1.2, -0.45, -0.45, 0.6), nrow = 2)
)
),
weights = c(0.3, 0.7),
ref_dose = 50,
log_normal = log_normal
)
}
h_get_logistic_log_normal_mix <- function() {
LogisticLogNormalMixture(
mean = c(0, 1),
cov = diag(2),
share_weight = 0.1,
ref_dose = 1.5
)
}
h_get_dual_endpoint <- function(use_log_dose = FALSE, fixed = TRUE) {
if (fixed) {
sigma2W <- 1 # nolint
rho <- 0
} else {
sigma2W <- c(a = 1, b = 2) # nolint
rho <- c(a = 1.5, b = 2.5)
}
DualEndpoint(
mean = c(0, 1),
cov = diag(2),
ref_dose = 2,
use_log_dose = use_log_dose,
sigma2W = sigma2W,
rho = rho
)
}
h_get_dual_endpoint_rw <- function(
use_log_dose = FALSE,
rw1 = TRUE,
fixed = TRUE
) {
de <- h_get_dual_endpoint(use_log_dose = use_log_dose, fixed = fixed)
sigma2betaW <- if (fixed) {
# nolint
0.01
} else {
c(a = 1, b = 2)
}
DualEndpointRW(
mean = de@betaZ_params@mean,
cov = de@betaZ_params@cov,
ref_dose = de@ref_dose,
use_log_dose = de@use_log_dose,
sigma2W = de@sigma2W,
rho = de@rho,
sigma2betaW = sigma2betaW,
rw1 = rw1
)
}
h_get_dual_endpoint_beta <- function(use_log_dose = FALSE, fixed = TRUE) {
de <- h_get_dual_endpoint(use_log_dose = use_log_dose, fixed = fixed)
if (fixed) {
E0 <- 10 # nolint
Emax <- 50 # nolint
delta1 <- 3
mode <- 5
} else {
E0 <- c(1, 6) # nolint
Emax <- c(2, 9) # nolint
delta1 <- 3
mode <- 5
}
DualEndpointBeta(
mean = de@betaZ_params@mean,
cov = de@betaZ_params@cov,
ref_dose = de@ref_dose,
use_log_dose = de@use_log_dose,
sigma2W = de@sigma2W,
rho = de@rho,
E0 = E0,
Emax = Emax,
delta1 = delta1,
mode = mode,
ref_dose_beta = 400 # When used for mcmc, it must be greater than data@doseGrid[nGrid].
)
}
h_get_dual_endpoint_emax <- function(use_log_dose = FALSE, fixed = TRUE) {
de <- h_get_dual_endpoint(use_log_dose = use_log_dose, fixed = fixed)
if (fixed) {
E0 <- 10 # nolint
Emax <- 50 # nolint
ED50 <- 20 # nolint
} else {
E0 <- c(0, 100) # nolint
Emax <- c(0, 500) # nolint
ED50 <- c(0, 500) # nolint
}
DualEndpointEmax(
mean = de@betaZ_params@mean,
cov = de@betaZ_params@cov,
ref_dose = de@ref_dose,
use_log_dose = de@use_log_dose,
sigma2W = de@sigma2W,
rho = de@rho,
E0 = E0,
Emax = Emax,
ED50 = ED50,
ref_dose_emax = 10
)
}
h_get_logistic_indep_beta <- function(emptydata = FALSE) {
dose_grid <- seq(25, 300, 25)
data <- if (emptydata) {
Data(doseGrid = dose_grid)
} else {
Data(
x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L),
doseGrid = dose_grid
)
}
LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEdose = c(25, 300),
DLEweights = c(3, 3),
data = data
)
}
h_get_eff_log_log <- function(
emptydata = FALSE,
dlt_observed_only = FALSE,
const = 2
) {
dose_grid <- seq(25, 300, 25)
data <- if (emptydata) {
DataDual(
doseGrid = dose_grid,
placebo = FALSE
)
} else {
# Observed data.
y <- if (dlt_observed_only) {
rep(1L, 8)
} else {
c(0, 0, 0, 0, 1, 1, 1, 1)
}
DataDual(
x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = y,
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = dose_grid
)
}
Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
const = const
)
}
h_get_eff_flexi <- function(
emptydata = FALSE,
rw1 = TRUE,
dlt_observed_only = FALSE
) {
dose_grid <- seq(25, 300, 25)
data <- if (emptydata) {
DataDual(
doseGrid = dose_grid,
placebo = FALSE
)
} else {
# Observed data.
y <- if (dlt_observed_only) {
rep(1L, 8)
} else {
c(0, 0, 0, 0, 1, 1, 1, 1)
}
DataDual(
x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = y,
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = dose_grid
)
}
EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = rw1,
data = data
)
}
h_get_da_logistic_log_normal <- function() {
DALogisticLogNormal(
mean = c(0, 1),
cov = diag(2),
ref_dose = 1,
npiece = 3,
l = c(0.5, 0.5, 0.5),
c_par = 2
)
}
h_get_tite_logistic_log_normal <- function(weight_method = "linear") {
TITELogisticLogNormal(
mean = c(0, 1),
cov = diag(2),
ref_dose = 1,
weight_method = weight_method
)
}
h_get_one_par_log_normal_prior <- function() {
OneParLogNormalPrior(
skel_probs = seq(from = 0.1, to = 0.9, length = 12),
dose_grid = 1:12,
sigma2 = 2
)
}
h_get_one_par_exp_prior <- function() {
OneParExpPrior(
skel_probs = seq(from = 0.1, to = 0.9, length = 12),
dose_grid = 1:12,
lambda = 2
)
}
h_get_fractional_crm <- function() {
FractionalCRM(
skel_probs = seq(from = 0.1, to = 0.9, length = 12),
dose_grid = c(10, 30, 50, 70, 100, 110, 130, 200, 250, 255, 270, 300),
sigma2 = 2
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.