Nothing
#### history ####
# 2025-01-26 first version
#' Calculate type of control data collected in a study
#'
#' Trial concept calculated: type of internal control.
#' ICH E10 lists as types of control: placebo concurrent control, no-treatment
#' concurrent control, dose-response concurrent control, active (positive)
#' concurrent control, external (including historical) control, multiple control
#' groups. Dose-controlled trials are currently not identified.
#' External (including historical) controls are so far not identified in specific
#' register fields. Cross-over designs, where identifiable, have active controls.
#'
#' @param df data frame such as from \link{dbGetFieldsIntoDf}. If `NULL`,
#' prints fields needed in `df` for calculating this trial concept, which can
#' be used with \link{dbGetFieldsIntoDf}.
#'
#' @return data frame with columns `_id` and `.controlType`, which is
#' a factor with levels `none`, `no-treatment`, `placebo`, `active`,
#' `placebo+active` and `other`.
#'
#' @export
#'
#' @importFrom dplyr if_else mutate case_when `%>%`
#' @importFrom rlang .data
#'
#' @examples
#' # fields needed
#' f.controlType()
#'
#' \dontrun{
#'
#' # apply trial concept when creating data frame
#' dbc <- nodbi::src_sqlite(
#' dbname = system.file("extdata", "demo.sqlite", package = "ctrdata"),
#' collection = "my_trials", flags = RSQLite::SQLITE_RO)
#' trialsDf <- dbGetFieldsIntoDf(
#' calculate = "f.controlType",
#' con = dbc)
#' }
#'
f.controlType <- function(df = NULL) {
# check generic, do not edit
stopifnot(is.data.frame(df) || is.null(df))
#### fields ####
fldsNeeded <- list(
"euctr" = c(
"e81_controlled",
"e816_cross_over",
"e817_other", # other controlled design
"e8171_other_trial_design_description",
"e822_placebo",
"e823_other", # other comparator
"e8231_comparator_description",
"e824_number_of_treatment_arms_in_the_trial"
),
"ctgov" = c(
"arm_group.arm_group_type"
),
"ctgov2" = c(
"protocolSection.designModule.designInfo.interventionModel",
"protocolSection.armsInterventionsModule.armGroups.type"
),
"isrctn" = c(
"trialDesign.studyDesign",
"trialDesign.primaryStudyDesign"
),
"ctis" = c(
# CTIS1
"authorizedPartI.productRoleGroupInfos.productRoleName",
# CTIS2
"authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName"
))
#### describe ####
if (is.null(df)) {
# generic, do not edit
return(fldsNeeded)
} # end describe
#### calculate ####
# check generic, do not edit
fctChkFlds(names(df), fldsNeeded)
# helper function
`%>%` <- dplyr::`%>%`
#### . EUCTR ####
df %>%
dplyr::mutate(
out = dplyr::case_when(
!.data$e81_controlled ~ "none",
.data$e822_placebo & .data$e823_other ~ "placebo+active",
.data$e822_placebo & grepl("dos[ea]", .data$e8231_comparator_description, TRUE) ~ "placebo+active",
.data$e822_placebo ~ "placebo",
.data$e816_cross_over ~ "crossover",
grepl("dos[ea]", .data$e8231_comparator_description, TRUE) ~ "active",
grepl("no treat", .data$e8231_comparator_description, TRUE) ~ "no-treatment",
.data$e823_other ~ "other",
.data$e81_controlled ~ "other",
.data$e824_number_of_treatment_arms_in_the_trial > 1L ~ "other",
.default = NA_character_
)
) %>%
dplyr::pull("out") -> df$euctr
#### . CTGOV ####
df %>%
dplyr::mutate(
out = dplyr::case_when(
grepl("Placebo Comparator", .data$arm_group.arm_group_type) &
grepl("Active Comparator", .data$arm_group.arm_group_type) ~ "placebo+active",
grepl("Placebo Comparator", .data$arm_group.arm_group_type) ~ "placebo",
grepl("Active Comparator", .data$arm_group.arm_group_type) ~ "active",
grepl("No Intervention", .data$arm_group.arm_group_type) ~ "no-treatment",
!is.na(.data$arm_group.arm_group_type) ~ "none",
.default = NA_character_
)
) %>%
dplyr::pull("out") -> df$ctgov
#### . CTGOV2 ####
df %>%
dplyr::mutate(
out = dplyr::case_when(
grepl("PLACEBO_COMPARATOR", .data$protocolSection.armsInterventionsModule.armGroups.type) &
grepl("ACTIVE_COMPARATOR", .data$protocolSection.armsInterventionsModule.armGroups.type) ~ "placebo+active",
grepl("PLACEBO_COMPARATOR", .data$protocolSection.armsInterventionsModule.armGroups.type) ~ "placebo",
grepl("ACTIVE_COMPARATOR", .data$protocolSection.armsInterventionsModule.armGroups.type) ~ "active",
grepl("NO_INTERVENTION", .data$protocolSection.armsInterventionsModule.armGroups.type) ~ "no-treatment",
!is.na(.data$protocolSection.armsInterventionsModule.armGroups.type) ~ "none",
.default = NA_character_
)
) %>%
dplyr::pull("out") -> df$ctgov2
#### . ISRCTN ####
df %>%
dplyr::mutate(
out = dplyr::case_when(
grepl("placebo.?control", .data$trialDesign.studyDesign, ignore.case = TRUE) &
grepl("active.?control", .data$trialDesign.studyDesign, ignore.case = TRUE) ~ "placebo+active",
grepl("placebo.?control", .data$trialDesign.studyDesign, ignore.case = TRUE) ~ "placebo",
grepl("active.?control", .data$trialDesign.studyDesign, ignore.case = TRUE) ~ "active",
grepl("[^no].?controlled", .data$trialDesign.studyDesign, ignore.case = TRUE) ~ "other",
.data$trialDesign.primaryStudyDesign == "Interventional" ~ "none",
.default = NA_character_
)
) %>%
dplyr::pull("out") -> df$isrctn
#### . CTIS ####
df %>%
dplyr::mutate(
out = dplyr::case_when(
grepl("placebo", .data$authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) &
grepl("comparator", .data$authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "placebo+active",
grepl("placebo", .data$authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) &
grepl("comparator", .data$authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "placebo+active",
grepl("placebo", .data$authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "placebo",
grepl("placebo", .data$authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "placebo",
grepl("comparator", .data$authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "active",
grepl("comparator", .data$authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName, ignore.case = TRUE) ~ "active",
!is.na(.data$authorizedPartI.productRoleGroupInfos.productRoleName) ~ "none",
!is.na(.data$authorizedApplication.authorizedPartI.productRoleGroupInfos.productRoleName) ~ "none",
.default = NA_character_
)
) %>%
dplyr::pull("out") -> df$ctis
# merge into vector (ordered factor)
df[[".controlType"]] <- factor(
dfMergeVariablesRelevel(
df = df,
colnames = names(fldsNeeded)
), levels = c(
"none", "no-treatment", "placebo",
"active", "placebo+active", "other")
)
# keep only outcome columns
df <- df[, c("_id", ".controlType"), drop = FALSE]
#### checks ####
stopifnot(inherits(df[[".controlType"]], "factor"))
stopifnot(ncol(df) == 2L)
# return
return(df)
} # end .controlType
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.