cxr_pm_fit | R Documentation |
Estimates parameters of user-specified population dynamics models.
cxr_pm_fit(
data,
focal_column = NULL,
model_family,
covariates = NULL,
optimization_method = c("Nelder-Mead", "BFGS", "CG", "ucminf", "L-BFGS-B", "nlm",
"nlminb", "Rcgmin", "Rvmmin", "spg", "bobyqa", "nmkb", "hjkb", "nloptr_CRS2_LM",
"nloptr_ISRES", "nloptr_DIRECT_L_RAND", "DEoptimR", "GenSA"),
alpha_form = c("none", "global", "pairwise"),
lambda_cov_form = c("none", "global"),
alpha_cov_form = c("none", "global", "pairwise"),
initial_values = list(lambda = 0, alpha_intra = 0, alpha_inter = 0, lambda_cov = 0,
alpha_cov = 0),
lower_bounds = NULL,
upper_bounds = NULL,
fixed_terms = NULL,
bootstrap_samples = 0
)
data |
dataframe with observations in rows and two sets of columns:
|
focal_column |
optional integer or character giving the column
with neighbours from the same species as the focal one. This field is necessary if "alpha_intra" is specified
in |
model_family |
family of model to use. Available families are BH (Beverton-Holt), LV (Lotka-Volterra), RK (Ricker), and LW (Law-Watkinson). Users may also define their own families and models (see vignette 4). |
covariates |
optional named matrix or dataframe with observations (rows) of any number of environmental covariates (columns). |
optimization_method |
numerical optimization method. |
alpha_form |
what form does the alpha parameter take? one of "none" (no alpha in the model), "global" (a single alpha for all pairwise interactions), or "pairwise" (one alpha value for every interaction). |
lambda_cov_form |
form of the covariate effects on lambda. Either "none" (no covariate effects) or "global" (one estimate per covariate). |
alpha_cov_form |
form of the covariate effects on alpha. One of "none" (no covariate effects), "global" (one estimate per covariate on every alpha), or "pairwise" (one estimate per covariate and pairwise alpha) |
initial_values |
list with components "lambda","alpha_intra","alpha_inter","lambda_cov", "alpha_cov", specifying the initial values for numerical optimization. Single values are allowed. |
lower_bounds |
optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov", "alpha_cov". |
upper_bounds |
optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov", "alpha_cov". |
fixed_terms |
optional list of numeric vectors specifying the value of fixed model parameters, among "lambda","alpha_intra","alpha_inter","lambda_cov", and "alpha_cov". |
bootstrap_samples |
number of bootstrap samples for error calculation. Defaults to 0, i.e. no error is calculated. |
an object of class 'cxr_pm_fit' which is a list with the following components:
model_name: string with the name of the fitness model
model: model function
data: data supplied
focal_ID: name/ID of the focal taxa, if provided in 'focal_column'
covariates: covariate data supplied
optimization_method: optimization method used
initial_values: list with initial values
fixed_terms: list with fixed terms
lambda: fitted value for lambda, or NULL if fixed
alpha_intra: fitted value for intraspecific alpha, or NULL if fixed
alpha_inter: fitted value for interspecific alpha, or NULL if fixed
lambda_cov: fitted value(s) for lambda_cov, or NULL if fixed.
alpha_cov: fitted value(s) for alpha_cov, or NULL if fixed. These are structured as a list with one element for each covariate.
lambda_standard_error: standard error for lambda, if computed
alpha_intra_standard_error: standard error for intraspecific alpha, if computed
alpha_inter_standard_error: standard error for interspecific alpha, if computed
lambda_cov_standard_error: standard error for lambda_cov, if computed
alpha_cov_standard_error: standard error for alpha_cov, if computed
log_likelihood: log-likelihood of the fit
data("neigh_list")
my.sp <- "BEMA"
# data for a single species, keep only fitness and neighbours columns
sp_data <- neigh_list[[my.sp]][2:ncol(neigh_list[[1]])]
sp_fit <- cxr_pm_fit(data = sp_data,
focal_column = my.sp,
optimization_method = "bobyqa",
model_family = "BH",
alpha_form = "pairwise",
lambda_cov_form = "none",
alpha_cov_form = "none",
initial_values = list(lambda = 1,alpha_intra = 0.1,alpha_inter = 0.1),
lower_bounds = list(lambda = 0,alpha_intra = 0,alpha_inter = 0),
upper_bounds = list(lambda = 100,alpha_intra = 1,alpha_inter = 1),
bootstrap_samples = 3)
summary(sp_fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.