ddlppar | R Documentation |
L^p
distance between two discrete probability distributions on the same support (which can be a Cartesian product of q
sets) , given the probabilities of the states (which are q
-tuples) of the support.
ddlppar(p1, p2, p = 1)
p1 |
array (or table) the dimension of which is |
p2 |
array (or table) the dimension of which is |
p |
integer. Parameter of the distance. |
The L^p
distance ||p_1 - p_2||
between two discrete distributions p_1
and p_2
is given by the formula:
||p_1 - p_2||^p = \sum_x{|p_1(x)-p_2(x)|^p}
If p=1
, it is the variational distance.
If p=2
, it is the Patrick-Fisher distance.
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
Deza, M.M. and Deza E. (2013). Encyclopedia of distances. Springer.
ddlp
: L^p
distance between two estimated discrete distributions, given samples.
Other distances: ddchisqsympar
, ddhellingerpar
, ddjeffreyspar
, ddjensenpar
.
# Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddlppar(p1, p2)
ddlppar(p1, p2, p=2)
# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddlppar(p1, p2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.