Nothing
#'@title Time Series Tune
#'@description Time Series Tune
#'@param input_size input size for machine learning model
#'@param base_model base model for tuning
#'@param folds number of folds for cross-validation
#'@return a `ts_tune` object.
#'@examples
#'data(sin_data)
#'ts <- ts_data(sin_data$y, 10)
#'ts_head(ts, 3)
#'
#'samp <- ts_sample(ts, test_size = 5)
#'io_train <- ts_projection(samp$train)
#'io_test <- ts_projection(samp$test)
#'
#'tune <- ts_tune(input_size=c(3:5), base_model = ts_elm(ts_norm_gminmax()))
#'ranges <- list(nhid = 1:5, actfun=c('purelin'))
#'
#'# Generic model tunning
#'model <- fit(tune, x=io_train$input, y=io_train$output, ranges)
#'
#'prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
#'prediction <- as.vector(prediction)
#'output <- as.vector(io_test$output)
#'
#'ev_test <- evaluate(model, output, prediction)
#'ev_test
#'@export
ts_tune <- function(input_size, base_model, folds=10) {
obj <- dal_tune(base_model, folds)
obj$input_size <- input_size
obj$name <- ""
class(obj) <- append("ts_tune", class(obj))
return(obj)
}
#'@importFrom stats predict
#'@export
fit.ts_tune <- function(obj, x, y, ranges, ...) {
build_model <- function(obj, ranges, x, y) {
model <- obj$base_model
model$input_size <- ranges$input_size
model <- set_params(model, ranges)
model <- fit(model, x, y)
return(model)
}
prepare_ranges <- function(obj, ranges) {
ranges <- append(list(input_size = obj$input_size), ranges)
ranges <- expand.grid(ranges)
ranges$key <- 1:nrow(ranges)
obj$ranges <- ranges
return(obj)
}
evaluate_error <- function(model, i, x, y) {
x <- x[i,]
y <- as.vector(y[i,])
prediction <- as.vector(stats::predict(model, x))
error <- evaluate(model, y, prediction)$mse
return(error)
}
obj <- prepare_ranges(obj, ranges)
ranges <- obj$ranges
n <- nrow(ranges)
i <- 1
hyperparameters <- NULL
if (n > 1) {
data <- data.frame(i = 1:nrow(x), idx = 1:nrow(x))
folds <- k_fold(sample_random(), data, obj$folds)
nfolds <- length(folds)
for (j in 1:nfolds) {
tt <- train_test_from_folds(folds, j)
error <- rep(0, n)
msg <- rep("", n)
for (i in 1:n) {
err <- tryCatch(
{
model <- build_model(obj, ranges[i,], x[tt$train$i,], y[tt$train$i,])
error[i] <- evaluate_error(model, tt$test$i, x, y)
""
},
error = function(cond) {
err <- sprintf("tune: %s", as.character(cond))
}
)
if (err != "") {
msg[i] <- err
}
}
hyperparameters <- rbind(hyperparameters, cbind(ranges, error, msg))
}
hyperparameters$error[hyperparameters$msg != ""] <- NA
i <- select_hyper(obj, hyperparameters)
}
model <- build_model(obj, ranges[i,], x, y)
if (n == 1) {
prediction <- stats::predict(model, x)
error <- evaluate(model, y, prediction)$mse
hyperparameters <- cbind(ranges, error)
}
attr(model, "params") <- as.list(ranges[i,])
attr(model, "hyperparameters") <- hyperparameters
return(model)
}
#'@title selection of hyperparameters (time series)
#'@description selection of hyperparameters (minimizing error)
#'@param obj object
#'@param hyperparameters hyperparameters dataset
#'@return optimized key number of hyperparameters
#'@importFrom dplyr filter summarise group_by
#'@export
select_hyper.ts_tune <- function(obj, hyperparameters) {
msg <- error <- 0
hyper_summary <- hyperparameters |> dplyr::filter(msg == "") |>
dplyr::group_by(key) |> dplyr::summarise(error = mean(error, na.rm=TRUE))
mim_error <- hyper_summary |> dplyr::summarise(error = min(error, na.rm=TRUE))
key <- which(hyper_summary$error == mim_error$error)
i <- min(hyper_summary$key[key])
return(i)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.