Nothing
#' @name gl.dist.ind
#' @title Calculates a distance matrix for individuals defined in a genlight object
#' @family distance
#' @description
#' Calculates various distances between individuals based on allele
#' frequencies or presence-absence data
#' @param x Name of the genlight [required].
#' @param method Specify distance measure [SNP: Euclidean; P/A: Simple].
#' @param scale If TRUE, the distances are scaled to fall in the range [0,1] [default TRUE]
#' @param swap If TRUE and working with presence-absence data, then presence
#' (no disrupting mutation) is scored as 0 and absence (presence of a disrupting
#' mutation) is scored as 1 [default FALSE].
#' @param type Specify the type of output, dist or matrix [default dist]
#' @param plot.display If TRUE, resultant plots are displayed in the plot window
#' [default TRUE].
#' @param plot.theme Theme for the plot. See Details for options
#' [default theme_dartR()].
#' @param plot.colors List of two color names for the borders and fill of the
#' plots [default c("#2171B5","#6BAED6")].
#' @param plot.dir Directory to save the plot RDS files [default as specified
#' by the global working directory or tempdir()]
#' @param plot.file Name for the RDS binary file to save (base name only, exclude extension) [default NULL]
#' @param verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2,
#' progress log ; 3, progress and results summary; 5, full report
#' [default 2 or as specified using gl.set.verbosity].
#'
#' @details
#' The distance measure for SNP genotypes can be one of:
#' \itemize{
#' \item Euclidean Distance [method = "Euclidean"]
#' \item Scaled Euclidean Distance [method='Euclidean", scale=TRUE]
#' \item Simple Mismatch Distance [method="Simple"]
#' \item Absolute Mismatch Distance [method="Absolute"]
#' \item Czekanowski (Manhattan) Distance [method="Manhattan"]
#' }
#' The distance measure for Sequence Tag Presence/Absence data (binary) can be one of:
#' \itemize{
#' \item Euclidean Distance [method = "Euclidean"]
#' \item Scaled Euclidean Distance [method='Euclidean", scale=TRUE]
#' \item Simple Matching Distance [method="Simple"]
#' \item Jaccard Distance [method="Jaccard"]
#' \item Bray-Curtis Distance [method="Bray-Curtis"]
#' }
#' Refer to the documentation of functions in
#' https://doi.org/10.1101/2023.03.22.533737 for algorithms
#' and definitions.
#'
#' @author Author(s): Custodian: Arthur Georges -- Post to #' \url{https://groups.google.com/d/forum/dartr}
#'
#' @examples
#' \donttest{
#' D <- gl.dist.ind(testset.gl[1:20,], method='manhattan')
#' D <- gl.dist.ind(testset.gs[1:20,], method='Jaccard',swap=TRUE)
#' }
#' D <- gl.dist.ind(testset.gl[1:20,], method='euclidean',scale=TRUE)
#'
#' @export
#' @return An object of class 'matrix' or dist' giving distances between individuals
gl.dist.ind <- function(x,
method = NULL,
scale = FALSE,
swap=FALSE,
type="dist",
plot.display = TRUE,
plot.theme = theme_dartR(),
plot.colors = NULL,
plot.file=NULL,
plot.dir=NULL,
verbose = NULL) {
# SET VERBOSITY
verbose <- gl.check.verbosity(verbose)
if(verbose==0){plot.display <- FALSE}
# SET WORKING DIRECTORY
plot.dir <- gl.check.wd(plot.dir,verbose=0)
# SET COLOURS
if(is.null(plot.colors)){
plot.colors <- c("#2171B5", "#6BAED6")
} else {
if(length(plot.colors) > 2){
if(verbose >= 2){cat(warn(" More than 2 colors specified, only the first 2 are used\n"))}
plot.colors <- plot.colors[1:2]
}
}
# FLAG SCRIPT START
funname <- match.call()[[1]]
utils.flag.start(func = funname,
build = "v.2023.3",
verbose = verbose)
# CHECK DATATYPE
datatype <-
utils.check.datatype(x,
accept = c("SNP", "SilicoDArT"),
verbose = verbose)
# FUNCTION SPECIFIC ERROR CHECKING
if (is.null(method) && datatype == "SNP") {
method <- "Euclidean"
}
if (is.null(method) && datatype == "SilicoDArT") {
method <- "Simple"
}
method <- tolower(method)
if (!(
method %in% c(
"euclidean",
"simple",
"manhattan",
"jaccard",
"bray-curtis",
"czekanowski",
"absolute"
)
)) {
if (datatype == "SNP") {
method <- "euclidean"
cat(warn(" Warning: Method not in the list of options, set to Euclidean Distance\n"))
}
if (datatype == "SilicoDArT") {
method <- "simple"
cat(warn(" Warning: Method not in the list of options, set to Simple Matching Distance\n"))
}
}
# DO THE JOB
if (datatype == "SNP") {
# Calculate euclidean distance using dist
if (method == "euclidean") {
if(scale==TRUE){
dd <- utils.dist.ind.snp(x, method='euclidean',scale=TRUE,verbose=0)
if (verbose >= 2) {
cat(report(" Calculating scaled Euclidean Distances between individuals\n"))
}
} else {
dd <- utils.dist.ind.snp(x, method='euclidean',scale=FALSE,verbose=0)
if (verbose >= 2) {
cat(report(" Calculating raw Euclidean Distances between individuals\n"))
}
}
}
# Calculate simple matching distance
if (method == "simple") {
dd <- dd <- utils.dist.ind.snp(x, method='simple',verbose=0)
if (verbose >= 2) {
cat(report(
" Calculating simple matching distance\n"
))
}
}
# Calculate absolute Manhattan distance
if (method == "manhattan") {
dd <- dd <- utils.dist.ind.snp(x, method='manhattan',verbose=0)
if (verbose >= 2) {
cat(report(
" Calculating Manhattan distance\n"
))
}
}
# Calculate absolute Czekanowski distance
if (method == "czekanowski") {
dd <- dd <- utils.dist.ind.snp(x, method='czekanowski',verbose=0)
if (verbose >= 2) {
cat(report(
" Calculating Czekanowski distance\n"
))
}
}
# Calculate absolute matching distance
if (method == "absolute") {
dd <- dd <- utils.dist.ind.snp(x, method='absolute',verbose=0)
if (verbose >= 2) {
cat(report(
" Calculating absolute matching distance\n"
))
}
}
dd <- as.dist(dd)
# # Revert to original order ord <- rank(pop(x)) mat <- as.matrix(dd)[ord, ord] dd <- as.dist(mat)
mat <- as.matrix(dd)
}
if (datatype == "SilicoDArT") {
if (method == "euclidean" && scale==FALSE) {
if (verbose >= 2) {
cat(report(" Calculating the Unscaled Euclidean Distances\n"))
}
}
if (method == "euclidean" && scale==TRUE) {
if (verbose >= 2) {
cat(report(" Calculating the Scaled Euclidean Distances\n"))
}
}
if (method == "simple") {
if (verbose >= 2) {
cat(report(" Calculating the Simple Matching Distances\n"))
}
}
if (method == "jaccard") {
if (verbose >= 2) {
cat(report(" Calculating distances based on the Jaccard Coefficient\n"))
}
}
if (method == "sorensen") {
if (verbose >= 2) {
cat(report(
" Calculating the Sorensen Distance\n"
))
}
}
mat <- utils.dist.binary(x,
method = method,
swap=swap,
#type="matrix",
scale = scale,
verbose = 0)
dd <- as.dist(mat)
}
# PLOT
if (datatype == "SNP") {
title_plot <-
paste0("SNP data (DArTSeq)\nInter-individual ",
method,
" distance")
} else {
if(method=="euclidean" && scale == TRUE){
title_plot <-
paste0(
"Presence[1]/Absence[0] data (SilicoDArT)\nInter-individual scaled ",
method,
" distance"
)
} else {
if(swap==TRUE){
title_plot <- paste0(
"Presence[0]/Absence[1] data (SilicoDArT swapped)\nInter-individual ",
method, " distance")
} else {
title_plot <- paste0(
"Presence[1]/Absence[0] data (SilicoDArT)\nInter-individual ",
method, " distance")
}
}
}
values <- NULL
df_plot <- data.frame(values = as.vector(mat))
# Boxplot
p1 <-
ggplot(df_plot, aes(y = values)) +
geom_boxplot(color = plot.colors[1],
fill = plot.colors[2]) +
coord_flip() +
plot.theme +
xlim(range = c(-1,1)) +
ylim(min(df_plot$values, na.rm = TRUE),
max(df_plot$values, na.rm = TRUE)) +
ylab(" ") +
theme(axis.text.y = element_blank(),
axis.ticks.y = element_blank()) +
ggtitle(title_plot)
# Histogram
p2 <-
ggplot(df_plot, aes(x = values)) +
geom_histogram(bins = 100,
color = plot.colors[1],
fill = plot.colors[2]) +
xlim(min(df_plot$values, na.rm = TRUE),
max(df_plot$values, na.rm = TRUE)) +
xlab("Distance") +
ylab("Count") +
plot.theme
# PRINTING OUTPUTS
# using package patchwork
p3 <- (p1 / p2) + plot_layout(heights = c(1, 4))
if (plot.display) {suppressWarnings(print(p3))}
# Optionally save the plot ---------------------
if(!is.null(plot.file)){
tmp <- utils.plot.save(p3,
dir=plot.dir,
file=plot.file,
verbose=verbose)
}
# SUMMARY Print out some statistics
if (verbose >= 3) {
cat(" Reporting inter-individual distances\n")
cat(" Distance measure:", method, "\n")
cat(" No. of populations =", nPop(x), "\n")
cat(" Average no. of individuals per population =",
round(nInd(x) / nPop(x), 1),
"\n")
cat(" No. of loci =", nLoc(x), "\n")
cat(" Minimum Distance: ", round(min(dd), 2), "\n")
cat(" Maximum Distance: ", round(max(dd), 2), "\n")
cat(" Average Distance: ", round(mean(dd), 3), "\n\n")
}
# FLAG SCRIPT END
if(type=="matrix"){
if(verbose >= 2){
cat(report(" Returning a square matrix\n"))
}
dimnames(mat) <- list(indNames(x), indNames(x))
final <- mat
}
if(type!="matrix"){
if(verbose >= 2){
cat(report(" Returning a stat::dist object\n"))
}
dm <- as.matrix(dd)
dimnames(dm) <- list(indNames(x), indNames(x))
dd <- as.dist(dm)
final <- dd
}
if (verbose > 0) {
cat(report("Completed:", funname, "\n"))
}
return(final)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.