R/gl.allele.freq.R

Defines functions gl.allele.freq

Documented in gl.allele.freq

#' @name gl.allele.freq
#' @title Generates percentage allele frequencies by locus and population
#' @family unmatched report

#' @description
#' This is a support script, to take SNP data or SilicoDArT presence/absence
#' data grouped into populations in a genlight object \{adegenet\} and generate
#' a table of allele frequencies for each population and locus

#' @param x Name of the genlight object containing the SNP or Tag P/A
#' (SilicoDArT) data [required].
#' @param percent If TRUE, percentage allele frequencies are given, if FALSE
#' allele proportions are given [default FALSE]
#' @param by If by='popxloc' then breakdown is given by population and locus; if by='pop'
#' then breakdown is given by population with statistics averaged across loci; if by='loc'
#' then breakdown is given by locus with statistics averaged across individuals [default 'pop']
#' @param simple A legacy option to return a dataframe with the frequency of the 
#' reference allele (alf1) and the frequency of the alternate allele (alf2) by locus [default FALSE]
#' @param verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2,
#' progress log; 3, progress and results summary; 5, full report
#' [default 2 or as specified using gl.set.verbosity]
#' 
#' @author Custodian: Arthur Georges (Post to
#' \url{https://groups.google.com/d/forum/dartr})
#' 
#' @examples
#' gl.allele.freq(testset.gl,percent=FALSE,by='pop')
#' gl.allele.freq(testset.gl,percent=FALSE,by="loc")
#' gl.allele.freq(testset.gl,percent=FALSE,by="popxloc")
#' gl.allele.freq(testset.gl,simple=TRUE)
#' 
#' 
#' @importFrom plyr rbind.fill
#' @export
#' @return A matrix with allele (SNP data) or presence/absence frequencies
#' (Tag P/A data) broken down by population and locus
#
# FOR THE DEVELOPER
# gl.alf(x) is replaced by gl.allele.freq(x,simple=TRUE); gl.alf is deprecated
# gl.percent.freq(x) is replaced by gl.allele.freq(x,percent=TRUE,by="popxloc"); gl.percent.freq is deprecated

gl.allele.freq <- function(x,
                           percent=FALSE,
                           by='pop',
                           simple=FALSE,
                           verbose = NULL) {
  # SET VERBOSITY
  verbose <- gl.check.verbosity(verbose)
  
  # FLAG SCRIPT START
  funname <- match.call()[[1]]
  utils.flag.start(func = funname,
                   build = "v.2023.3",
                   verbose = verbose)
  
  # CHECK DATATYPE
  datatype <- utils.check.datatype(x, verbose = verbose)
  
  # SCRIPT SPECIFIC ERROR CHECKING
  
  if(simple==TRUE){
    by="loc"
    percent=FALSE
  }
  
  # Checking for and removing monomorphic loci
  if (!(x@other$loc.metrics.flags$monomorphs == TRUE)) {
    if (verbose >= 1) {
      cat(warn(
        "Warning: Monomorphic loci retained, used in calculations\n"
      ))
    }
  }
  
  # DO THE JOB
  x2 <- seppop(x)
  x2_list <- lapply(x2, as.matrix)
  
  if (datatype == "SilicoDArT") {
    if (verbose >= 2) {
      if(by=="pop"){
        cat(report("  Calculating Tag P/A frequencies for populations\n"))
      } else if(by=="loc"){
        cat(report("  Calculating Tag P/A frequencies for loci\n"))
      } else {
        cat(report("  Calculating Tag P/A frequencies broken down by population and locus\n"))
      }
    }
    # Treat SilicoDArT as biallelic, no heterozygotes
    x2_list <- lapply(x2_list, function(x) {
      x[x == 1] <- 2
      return(x)
    })
    
  } else {
    if (verbose >= 2) {
      if(by=="pop"){
        cat(report("  Calculating Tag allele frequencies for populations\n"))
      } else if(by=="loc"){
        cat(report("  Calculating Tag allele frequencies for loci\n"))
      } else {
        cat(report("  Calculating Tag allele frequencies broken down by population and locus\n"))
      }
    }
    # if (verbose >= 3) {
    #     cat(report("  This may take some time -- be patient\n"))
    # }
  }
  
  loc_names <- lapply(x2_list, colnames)
  
  nmissing_temp <- lapply(x2_list, is.na)
  nmissing <- lapply(nmissing_temp, colSums)
  
  n_temp <- lapply(x2_list, nrow)
  n <- lapply(n_temp, rep, nLoc(x))
  
  nobs_temp <- lapply(nmissing, unname)
  nobs <- Map("-", n, nobs_temp)
  
  sum_res <- lapply(x2_list, colSums, na.rm = T)
  
  f <- lapply(x2_list, colMeans, na.rm = T)
  f <- lapply(f, "/", 2)
  f <- lapply(f, "*", 100)
  f <- lapply(f, "round", 2)
  
  m <-
    Map(cbind,
        names(sum_res),
        loc_names,
        sum_res,
        nobs,
        nmissing,
        f,
        n)
  m <- lapply(m, cbind, 1:nLoc(x))
  m <- lapply(m, as.data.frame)
  m <- plyr::rbind.fill(m)
  
  colnames(m) <-
    c("popn",
      "locus",
      "sum",
      "nobs",
      "nmissing",
      "frequency",
      "n",
      "loc_order")
  
  m$popn <- as.factor(m$popn)
  m$locus <- as.factor(m$locus)
  m$sum <- as.numeric(as.character(m$sum))
  m$nobs <- as.numeric(as.character(m$nobs))
  m$nmissing <- as.numeric(as.character(m$nmissing))
  if(percent){
    m$frequency <- as.numeric(as.character(m$frequency))
  } else {
    m$frequency <- as.numeric(as.character(m$frequency))/100
  }
  m$n <- as.numeric(as.character(m$n))
  m$loc_order <- as.numeric(as.character(m$loc_order))
  
  m <- m[order(m$loc_order, m$popn),]
  m <- m[,-ncol(m)]
  
  rownames(m) <- NULL
  
  if(by=='pop'){
    # Average statistics for each population
    m <- aggregate(. ~ popn, data = m, FUN = function(x) mean(x, na.rm = TRUE))
    m$locus <- NULL
    m$sum <- NULL
    m$nobs <- round(m$nobs,1)
    m$nmissing <- round(m$nmissing,4)
    if(percent){
      m$frequency <- round(m$frequency,4)
    } else {
      m$frequency <- round(m$frequency,4)
    }
  } else if(by=='loc'){
    # Average statistics for each locus
    m <- aggregate(. ~ locus, data = m, FUN = function(x) mean(x, na.rm = TRUE))
    m$popn <- NULL
    m$sum <- NULL
    m$nobs <- round(m$nobs,1)
    m$nmissing <- round(m$nmissing,4)
    if(percent){
      m$frequency <- round(m$frequency,4)
    } else {
      m$frequency <- round(m$frequency,4)
    }
  } else {
    m$sum <- round(m$sum,4)
    m$nobs <- round(m$nobs,1)
    m$nmissing <- round(m$nmissing,4)
    if(percent){
      m$frequency <- round(m$frequency,4)
    } else {
      m$frequency <- round(m$frequency,4)
    }
  }
  
  if(simple==TRUE){
    m$alf2 <- m$frequency
    m$alf1 <- 1 - m$frequency
    rownames(m) <- as.character(m$locus)
    m <- m[,c("alf1","alf2")]
  } 
  
  # FLAG SCRIPT END
  
  if (verbose >= 1) {
    cat(report("Completed:", funname, "\n"))
  }
  
  return(m)
  
}

Try the dartR package in your browser

Any scripts or data that you put into this service are public.

dartR documentation built on April 4, 2025, 12:23 a.m.