This is a brief example report using dataquieR
's functions. Also, all outputs
are disabled to avoid big files and long runtimes on CRAN. For a longer and
better elaborated example, please also consider our
online example with data from SHIP.
Please, also consider the dq_report2
function for creating
interactive reports, that can be viewed using a web browser.
load(system.file("extdata", "study_data.RData", package = "dataquieR")) sd1 <- study_data
The imported study data consist of:
dim(sd1)[1]
observations anddim(sd1)[2]
study variablesload(system.file("extdata", "meta_data.RData", package = "dataquieR")) md1 <- meta_data
The imported meta data provide information for:
dim(md1)[1]
study variables anddim(md1)[2]
attributesThe call of this R-function requires two inputs only:
appmatrix <- pro_applicability_matrix( study_data = sd1, meta_data = md1, label_col = LABEL )
Heatmap-like plot:
appmatrix$ApplicabilityPlot
my_unit_missings2 <- com_unit_missingness( study_data = sd1, meta_data = md1, id_vars = c("CENTER_0", "PSEUDO_ID"), strata_vars = "CENTER_0", label_col = "LABEL" )
my_unit_missings2$SummaryData
MissSegs <- com_segment_missingness( study_data = sd1, meta_data = md1, label_col = "LABEL", threshold_value = 5, direction = "high", exclude_roles = c("secondary", "process") )
MissSegs$SummaryPlot
For some analyses adding new and transformed variable to the study data is necessary.
# use the month function of the lubridate package to extract month of exam date require(lubridate) # apply changes to copy of data sd2 <- sd1 # indicate first/second half year sd2$month <- month(sd2$v00013)
Static metadata of the variable must be added to the respective metadata.
MD_TMP <- prep_add_to_meta( VAR_NAMES = "month", DATA_TYPE = "integer", LABEL = "EXAM_MONTH", VALUE_LABELS = "1 = January | 2 = February | 3 = March | 4 = April | 5 = May | 6 = June | 7 = July | 8 = August | 9 = September | 10 = October | 11 = November | 12 = December", meta_data = md1 )
Subsequent call of the R-function may include the new variable.
MissSegs <- com_segment_missingness( study_data = sd2, meta_data = MD_TMP, group_vars = "EXAM_MONTH", label_col = "LABEL", threshold_value = 1, direction = "high", exclude_roles = c("secondary", "process") )
MissSegs$SummaryPlot
The following implementation considers also labeled missing codes. The use of such a table is optional but recommended. Missing code labels used in the simulated study data are loaded as follows:
code_labels <- prep_get_data_frame("meta_data_v2|missing_table")
item_miss <- com_item_missingness( study_data = sd1, meta_data = meta_data, label_col = "LABEL", show_causes = TRUE, cause_label_df = code_labels, include_sysmiss = TRUE, threshold_value = 80 )
The function call above sets the analyses of causes for missing values to TRUE, includes system missings with an own code, and sets the threshold to 80%.
item_miss$SummaryTable
item_miss$SummaryPlot
MyValueLimits <- con_limit_deviations( resp_vars = NULL, label_col = "LABEL", study_data = sd1, meta_data = md1, limits = "HARD_LIMITS" )
MyValueLimits$SummaryTable
# select variables with deviations whichdeviate <- unique(as.character(MyValueLimits$SummaryData$Variables)[ MyValueLimits$SummaryData$Number > 0 & MyValueLimits$SummaryData$Section != "within"])
patchwork::wrap_plots(plotlist = MyValueLimits$SummaryPlotList[whichdeviate], ncol = 2)
IAVCatAll <- con_inadmissible_categorical( study_data = sd1, meta_data = md1, label_col = "LABEL" )
checks <- read.csv(system.file("extdata", "contradiction_checks.csv", package = "dataquieR" ), header = TRUE, sep = "#" )
AnyContradictions <- con_contradictions( study_data = sd1, meta_data = md1, label_col = "LABEL", check_table = checks, threshold_value = 1 )
AnyContradictions$SummaryTable
AnyContradictions$SummaryPlot
robust_univariate_outlier(study_data = sd1, meta_data = md1, label_col = LABEL) c( # head(ruol$SummaryPlotList, 2), tail(ruol$SummaryPlotList, 2) )
myloess <- dataquieR::acc_loess( resp_vars = "SBP_0", group_vars = "USR_BP_0", time_vars = "EXAM_DT_0", label_col = "LABEL", study_data = sd1, meta_data = md1 ) myloess$SummaryPlotList
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.