acc_end_digits: Extension of acc_shape_or_scale to examine uniform...

View source: R/acc_end_digits.R

acc_end_digitsR Documentation

Extension of acc_shape_or_scale to examine uniform distributions of end digits

Description

This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey (1977)) which is also applicable for count data (Kleiber and Zeileis (2016)).

Indicator

Usage

acc_end_digits(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable the names of the measurement variables, mandatory

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

a list with:

  • SummaryTable: data.frame with the columns Variables and FLG_acc_ud_shape

  • SummaryPlot: ggplot2 distribution plot comparing expected with observed distribution

ALGORITHM OF THIS IMPLEMENTATION:

  • This implementation is restricted to data of type float or integer.

  • Missing codes are removed from resp_vars (if defined in the metadata)

  • The user must specify the column of the metadata containing probability distribution (currently only: normal, uniform, gamma)

  • Parameters of each distribution can be estimated from the data or are specified by the user

  • A histogram-like plot contrasts the empirical vs. the technical distribution

See Also

Online Documentation


dataquieR documentation built on Jan. 8, 2026, 5:08 p.m.