depth.space. | R Documentation |
Calculates the representation of the training classes in depth space.
The detailed descriptions are found in the corresponding topics.
depth.space.(data, cardinalities, notion, ...)
## Mahalanobis depth
# depth.space.Mahalanobis(data, cardinalities, mah.estimate = "moment", mah.parMcd = 0.75)
## projection depth
# depth.space.projection(data, cardinalities, method = "random", num.directions = 1000)
## Tukey depth
# depth.space.halfspace(data, cardinalities, exact, alg, num.directions = 1000)
## spatial depth
# depth.space.spatial(data, cardinalities)
## zonoid depth
# depth.space.zonoid(data, cardinalities)
# Potential
# depth.space.potential(data, cardinalities, pretransform = "NMom",
# kernel = "GKernel", kernel.bandwidth = NULL, mah.parMcd = 0.75)
data |
Matrix containing training sample where each row is a |
cardinalities |
Numerical vector of cardinalities of each class in |
notion |
The name of the depth notion (shall also work with |
... |
Additional parameters passed to the depth functions. |
Matrix of objects, each object (row) is represented via its depths (columns) w.r.t. each of the classes of the training sample; order of the classes in columns corresponds to the one in the argument cardinalities
.
depth.space.Mahalanobis
depth.space.projection
depth.space.halfspace
depth.space.spatial
depth.space.zonoid
# Generate a bivariate normal location-shift classification task
# containing 20 training objects
class1 <- mvrnorm(10, c(0,0),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
class2 <- mvrnorm(10, c(2,2),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
data <- rbind(class1, class2)
# Get depth space using zonoid depth
depth.space.(data, c(10, 10), notion = "zonoid")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.