R/rk.R

Defines functions rk

Documented in rk

### ============================================================================
### Interface to a generalized code for solving explicit variable and fixed
### step ODE solvers of the Runge-Kutta family, see helpfile for details.
### ============================================================================

rk <- function(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
  verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL, hini = hmax,
  ynames = TRUE, method = rkMethod("rk45dp7", ... ), maxsteps = 5000,
  dllname = NULL, initfunc = dllname, initpar = parms,
  rpar = NULL,  ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
  initforc = NULL, fcontrol = NULL, events = NULL, ...) {

  ## check for unsupported solver options
  dots   <- list(...); nmdots <- names(dots)
  if(any(c("jacfunc", "jactype", "mf", "bandup", "banddown") %in% nmdots)) {
    warning("Euler and Runge-Kutta solvers make no use of a Jacobian,\n",
            "  ('jacfunc', 'jactype', 'mf', 'bandup' and 'banddown' are ignored).\n")
  }
  if(any(c("lags") %in% nmdots)) {
    warning("lags are not yet implemented for Euler and Runge-Kutta solvers,\n",
            "  (argument 'lags' is ignored).\n")
  }

  if (is.list(func)) {            # a list of compiled functions
      if (!is.null(initfunc) & "initfunc" %in% names(func))
         stop("If 'func' is a list that contains initfunc, argument 'initfunc' should be NULL")
      if (!is.null(dllname) & "dllname" %in% names(func))
         stop("If 'func' is a list that contains dllname, argument 'dllname' should be NULL")
      if (!is.null(initforc) & "initforc" %in% names(func))
         stop("If 'func' is a list that contains initforc, argument 'initforc' should be NULL")
      if (!is.null(events$func) & "eventfunc" %in% names(func))
         stop("If 'func' is a list that contains eventfunc, argument 'events$func' should be NULL")
      if ("eventfunc" %in% names(func)) {
         if (! is.null(events))
           events$func <- func$eventfunc
         else
           events <- list(func = func$eventfunc)
      }
     if (!is.null(func$initfunc)) initfunc <- func$initfunc
     if (!is.null(func$dllname))  dllname <- func$dllname
     if (!is.null(func$initforc)) initforc <- func$initforc
     func <- func$func
  }
    if (is.character(method)) method <- rkMethod(method)
    varstep <- method$varstep
    if (!varstep & (hmin != 0 | !is.null(hmax)))
      cat("'hmin' and 'hmax' are ignored (fixed step Runge-Kutta method).\n")

    ## Check inputs
    hmax <- checkInput(y, times, func, rtol, atol,
      jacfunc = NULL, tcrit, hmin, hmax, hini, dllname)
    if (hmax == 0) hmax <- .Machine$double.xmax # i.e. practically unlimited

    n <- length(y)

    if (maxsteps < 0)       stop("maxsteps must be positive")
    if (!is.finite(maxsteps)) maxsteps <- .Machine$integer.max - 1
    if (is.null(tcrit)) tcrit <- max(times)

    ## ToDo: check for nonsense-combinations of densetype and d

    if (!is.null(method$densetype)) {
      ## make this an integer to avoid errors on the C level
      method$densetype <- as.integer(method$densetype)
      if (!(method$densetype %in% c(1L, 2L))) {
        warning("Unknown value of densetype; set to NULL")
        method$densetype <- NULL
      }
    }
    ## Checks and ajustments for Neville-Aitken interpolation
    ## - starting from deSolve >= 1.7 this interpolation method
    ##   is disabled by default.
    ## - Dense output for special RK methods is enabled and
    ##   all others adjust internal time steps to hit external time steps
    if (is.null(method$nknots)) {
      method$nknots <- 0L
    } else {
      method$nknots <- as.integer(ceiling(method$nknots))
    }
    nknots <- method$nknots
    if (nknots > 8L) {
        warning("Large number of nknots does not make sense.")
    } else if (nknots < 2L) {
      ## method without or with disabled interpolation
      method$nknots <- 0L
    } else {
      trange <- diff(range(times))
      ## ensure that we have at least nknots + 2 data points; + 0.5 for safety)
      ## to allow 3rd order polynomial interpolation
      ## for methods without built-in dense output
      if ((is.null(method$d) &                        # has no "dense output"?
           is.null(method$densetype) &                # or no dense output type
        (hmax > 1.0/(nknots + 2.5) * trange))) {      # or time steps too large?
        ## in interpolation mode: automatic adjustment of step size arguments
        ## to ensure the required minimum of knots
        hini <- hmax <- 1.0/(nknots + 2.5) * trange
        if (hmin < hini) hmin <- hini
        cat("\nNote: Method ", method$ID,
            " needs intermediate steps for interpolation\n")
        cat("hmax decreased to", hmax, "\n")
      }
    }

    ## Model as shared object (DLL)?
    Ynames <- attr(y, "names")
    Initfunc <- NULL
    Eventfunc <- NULL
    events <- checkevents(events, times, Ynames, dllname)
    if (! is.null(events$newTimes)) times <- events$newTimes

    ## dummy forcings
    flist    <-list(fmat = 0, tmat = 0, imat = 0, ModelForc = NULL)
    Nstates <- length(y) # assume length of states is correct

    ## function specified in a DLL or inline compiled
    if (is.character(func) | inherits(func, "CFunc")) {
      DLL <- checkDLL(func, NULL, dllname,
                      initfunc, verbose, nout, outnames)

      Initfunc  <- DLL$ModelInit
      Func      <- DLL$Func
      Nglobal   <- DLL$Nglobal
      Nmtot     <- DLL$Nmtot
      Eventfunc <- events$func

      if (! is.null(forcings))
        flist <- checkforcings(forcings, times, dllname, initforc, verbose, fcontrol)

      if (is.null(ipar)) ipar <- 0
      if (is.null(rpar)) rpar <- 0
      ## preparation for events in R if function is a DLL (added by KS)
      if (is.function(Eventfunc))
        rho <- environment(Eventfunc)
      else
        rho <- NULL

    } else {
      ## parameter initialisation not needed if function is not a DLL
      initpar <- NULL
      rho <- environment(func)

      ## func is overruled, either including ynames, or not
      ## This allows to pass the "..." arguments and the parameters
      if(ynames) {
        Func   <- function(time, state, parms){
          attr(state, "names") <- Ynames
          func(time, state, parms, ...)}
        if (! is.null(events$Type))
          if (events$Type == 2)
            Eventfunc <- function(time, state) {
              attr(state, "names") <- Ynames
              events$func(time, state, parms, ...)
            }
      } else {                            # no ynames...
        Func   <- function(time, state, parms)
          func(time, state, parms, ...)
        if (! is.null(events$Type))
          if (events$Type == 2)
            Eventfunc <- function(time, state)
              events$func(time, state, parms, ...)
      }

      ## Call func once to figure out whether and how many "global"
      ## results it wants to return and some other safety checks
      FF <- checkFuncEuler(Func, times, y, parms, rho, Nstates)
      Nglobal <- FF$Nglobal
      Nmtot   <- FF$Nmtot

      if (! is.null(events$Type))
        if (events$Type == 2) checkEventFunc(Eventfunc, times, y, rho)
    }

    ## handle length of atol and rtol
    if (Nstates %% length(atol))
      warning("length of atol does not match number of states")
    if (Nstates %% length(rtol))
      warning("length of rtol does not match number of states")

    atol <- rep(atol, length.out = Nstates)
    rtol <- rep(rtol, length.out = Nstates)

    ## Number of steps until the solver gives up
    # nsteps  <- min(.Machine$integer.max -1, maxsteps * length(times))

    ## total number of time steps is set to
    ## average number per time step * number of time steps
    ## but not less than required for the largest time step with given hini

    nsteps  <- min(.Machine$integer.max - 1,
                   max(maxsteps * length(times),    # max. total number of steps
                       max(diff(times))/hini + 1)   # but not less than required
               )

    vrb <- FALSE # TRUE forces some internal debugging output of the C code
    ## Implicit methods
    on.exit(.C("unlock_solver"))
    implicit <- method$implicit
    if (is.null(implicit)) implicit <- 0
    if (implicit) {
      if (is.null(hini)) hini <- 0
      out <- .Call("call_rkImplicit", as.double(y), as.double(times),
        Func, Initfunc, parms, Eventfunc, events,
        as.integer(Nglobal), rho,
        as.double(tcrit), as.integer(vrb),
        as.double(hini), as.double(rpar), as.integer(ipar), method,
        as.integer(nsteps), flist)

    } else if (varstep) { # Methods with variable step size
      if (is.null(hini)) hini <- hmax
      out <- .Call("call_rkAuto", as.double(y), as.double(times),
        Func, Initfunc, parms, Eventfunc, events,
        as.integer(Nglobal), rho, as.double(atol),
        as.double(rtol), as.double(tcrit), as.integer(vrb),
        as.double(hmin), as.double(hmax), as.double(hini),
        as.double(rpar), as.integer(ipar), method,
        as.integer(nsteps), flist)
    } else { # Fixed step methods
      ## hini = 0 for fixed step methods means
      ## that steps in "times" are used as they are
      if (is.null(hini)) hini <- 0
      out <- .Call("call_rkFixed", as.double(y), as.double(times),
        Func, Initfunc, parms, Eventfunc, events,
        as.integer(Nglobal), rho,
        as.double(tcrit), as.integer(vrb),
        as.double(hini), as.double(rpar), as.integer(ipar), method,
        as.integer(nsteps), flist)
    }

    ## output cleanup
    out <- saveOutrk(out, y, n, Nglobal, Nmtot,
                     iin = c(1, 12:15), iout = c(1:3, 13, 18))

    attr(out, "type") <- "rk"
    if (verbose) diagnostics(out)
    return(out)
}

Try the deSolve package in your browser

Any scripts or data that you put into this service are public.

deSolve documentation built on Nov. 28, 2023, 1:11 a.m.