R/dfnbt.R

Defines functions print.dfnbt dfnbt

Documented in dfnbt

#' @title Discrete factor analysis for the truncated negative binomial distribution (with right truncation at A)
#'
#' @param y Data, an n by d numeric matrix
#' @param A truncation point (Note that if the data is in Likert scale
#' starting from 1, then you should subtract 1 from the data and then use the
#' proposed negative binomial models.
#'
#' @return A list with entries
#' \item{AIC}{AIC value for the optimal model}
#' \item{indexmat}{Factors and variables in each factor}
#' \item{estr0}{Estimated value of r for the factor}
#' \item{estp0}{Estimated value of p for the factor}
#' \item{estr}{Estimated value of r for the observation}
#' \item{estp}{Estimated value of r for the observation}
#'
#' @export
#' @importFrom methods as
#' @importFrom stats nlminb
#' @importFrom stats ppois
#' @importFrom stats cor dnbinom pnbinom var
#'
#' @examples
#' dfnbt(zinb100_Data[1:40,1:3], A = 6)
dfnbt <- function(y, A){
  y <- as.matrix(y)
  # negative correlation
  Cor.Mat <- cor(y,method="kendall")
  if(any(Cor.Mat < -.5)) message("There are some highly negative correlations among some variables so the findings may not be stable.")
  ## warning and stop messages
  if(is.null(A)) stop("Please provide a value for A, truncation point.")
  if (any(is.na(y))) stop("Missing data (NA's) detected. Take actions (e.g., removing cases, removing features, imputation) to eliminate missing data and run dfnbgst again.")
  if (!is.numeric(y)) stop("Factor analysis applies only to numerical variables.")
  if (any(y<0)) stop("There are negative values in the data, please treat them and run factor analysis again.")
  if(is.null(colnames(y))){
    colnames(y) <- paste0("Var", c(1:ncol(y)), sep ="")
  }
  cn <- colnames(y)
  n <- nrow(y)
  d <- ncol(y)
  if (d < 3)
    stop("Factor analysis requires at least three variables.")

  cl <- match.call()
  start_time <- Sys.time()

  stop <- 0
  m <- colMeans(y)
  v <- apply(y,2,var)
  indexmat <- matrix(0, d, d)
  indexmat[1,] <- 1:d     # Initial grouping, the (1,1,...,1) model.

  optlik <- rep(0, d)
  for (j in 1:d){
    eval_f <- function(t0){
      return(ff = dnblikut(t0, y[,j], A))
    }
    #p0 <- min(m[j]/v[j], 0.9) # To prevent from values above 1.
    p0 <- m[j]/v[j] # To prevent from values above 1.
    #if(p0>1) stop("This model does not handle the underdispersion situation. Please try other models.")
    r0 <- p0/(1-p0)*m[j]
    par0 <- c(r0, p0)
    # Gives univariate maximum likelihood.
    optlik[j] <- nlminb(par0, eval_f,
                        lower = c(0.00000001,0.00000001),
                        upper = c(Inf,1))$objective
  }
  lik1 <- sum(optlik)
  AIC1 <- 2/n*(lik1+2*d)

  likmat <- 1000000*matrix(1, d, d) # To prevent that no element with i>j is choosen in the minimization.
  antilik <- matrix(0,d,d)
  for (i in 1:(d-1)){
    for (j in (i+1):d){
      ytemp <- cbind(y[,i], y[,j])
      mtemp <- c(m[i], m[j])
      vtemp <- c(v[i], v[j])

      eval_f1 <- function(t0){
        return(ff = dnblikgt(t0, ytemp, A))
      }

      pstart <- pmin(mtemp/vtemp,  0.9)
      rstart <- pstart/(1-pstart)*mtemp
      par0 <- c(1, rstart, 0.5, pstart)

      likmat[i,j] <- nlminb(par0, eval_f1,
                            lower = c(rep(0.000001,6)),
                            upper = c(rep(Inf,3),rep(1,3)))$objective
      antilik[i,j] <- optlik[i] + optlik[j]
    }
  }
  lik2 <- likmat + lik1 - antilik
  min1 <- apply(lik2, 2, min)
  min_lik2 <- arrayInd(which.min(lik2), dim(lik2))
  I <- min_lik2[1]
  J <- min_lik2[2]
  minlik <- lik2[I,J]
  AIC2 <- 2/n*(minlik+2*(d+1))
  if (AIC1 < AIC2){
    AICmin <- AIC1
    stop <- 1
  } else {
    indexmat1 <- indexmat
    optlik1 <- optlik
    indexmat1[2,I] <- J
    optlik1[I] <- likmat[I,J]

    if(J < d){
      for(j in (J+1):d){  # Moving down...
        optlik1[j-1] <- optlik[j]
        indexmat1[1,(j-1)] <- j
      }
    }
    indexmat1[1,d] <- 0
    indexmat <- indexmat1
    posvar <- colSums(indexmat>0)

    #This gives a vector with the number of variables in the d different columns of indexmat."
    optlik <- optlik1
    lik1 <- sum(optlik) # Optimal minus log likelihood.
    AIC1 <- AIC2        # New optimal AIC."
  }

  step <- 2
  while(stop == 0 && step < d)   {
    # Minimize minus loglik for all possible jonings of groups of variables from the previous step.
    d1 <- d - step + 1
    likmat <- 1000000*matrix(1, d1, d1)
    antilik <- matrix(0, d1, d1)
    for (i in 1:(d1-1)){
      for (j in (i+1):d1){
        ytemp <- cbind(y[,indexmat[c(1:posvar[i]),i]], y[,indexmat[c(1:posvar[j]),j]])
        mtemp <- colMeans(ytemp)
        vtemp <- apply(ytemp,2,var)
        pstart <- pmin(mtemp/vtemp,  0.9)
        rstart <- pstart/(1-pstart)*mtemp
        nvar <- posvar[i] + posvar[j] + 1
        eval_f2 <-  function(t0){
          return(ff = dnblikgt(t0,ytemp,A))
        }
        par0 <- c(1, rstart, 0.5, pstart)
        likmat[i,j] <- nlminb(par0, eval_f2,
                              lower = c(rep(0, length(par0))),
                              upper = c(rep(1, nvar),rep(Inf, nvar)))$objective

        antilik[i,j] <- optlik[i] + optlik[j] - 2*(1-(posvar[i] > 1) - (posvar[j] > 1) )
      } #inner for loop ends...
    } #outer for loop ends...

    lik2 <- likmat + minlik - antilik
    # minlik is the optimal minus log likelihood (corrected for the number of parameters) in the previous step.
    min1 <- apply(lik2, 2, min)
    min_lik2 <- arrayInd(which.min(lik2), dim(lik2))
    I <- min_lik2[1] ; J <- min_lik2[2]
    minlik <- lik2[I,J]

    ################################################
    posI <- posvar[I]
    posJ <- posvar[J]
    indexmat1 <- indexmat
    optlik1 <- optlik
    indexmat1[(posI+1):(posI+posJ),I] <- indexmat[(1:posJ),J]
    optlik1[I] <- likmat[I,J]

    if(J < d1){
      for(j in (J+1):d1){  # Moving down...
        optlik1[j-1] <- optlik[j]
        indexmat1[,(j-1)] <- indexmat[,j]
      }
    }
    indexmat1[,d1] <- rep(0,d)
    posvar1 <- colSums(indexmat1 > 0)
    AIC2 <- 2/n*(minlik+2*(d+1)) # OBS: minlik is already corrected for the changed number of parameters compared to the previous step.
    if (AIC1 < AIC2){ # The previous model was better...
      AICmin <- AIC1
      stop <- 1
    } else{
      optlik <- optlik1
      posvar <- posvar1
      indexmat <- indexmat1
      AIC1 <- AIC2 # New optimal AIC.
      step <- step+1
    } # else ends..
  } # while ends...
  AICmin <- AIC1 # Gives the output AIC.

  ################################################################
  j <- 1
  estr0 <- estp0 <- c(rep(0,d))
  estr <- estp <- matrix(0, nrow = d, ncol = d);
  stop <- 0
  while(stop == 0) {
    nvar <- sum(indexmat[, j] > 0)         # number of variables in submodel
    vartemp <- indexmat[(1:nvar), j]       # variable indeces in submodel
    ytemp <- as.matrix(y[, vartemp])       # corresponding observations
    mtemp <- colMeans(ytemp)
    vtemp <- apply(ytemp,2,var)
    pstart <- pmin(mtemp/vtemp, 0.9)
    rstart <- pstart/(1-pstart)*mtemp
    nvar1 <- nvar+1
    if(nvar == 1){
      eval_f3 <- function(t0){
        return(ff = dnblikut(t0, ytemp, A))
      }
      est <- nlminb(c(rstart, pstart), eval_f3,
                    lower = c(0,0),
                    upper = c(1,Inf))$par
      estp[1,j] <- est[1]
      estr[1,j] <- est[2]
    } else {
      eval_f4 = function(tt){
        return(ff = dnblikgt(tt, ytemp, A))
      }
      par0 <- c(1, rstart, 0.5, pstart)
      est <- nlminb(par0, eval_f4,
                    lower = c(rep(0,2*nvar1)),
                    upper = c(rep(1,nvar1),rep(Inf,nvar1)))$par
      estr0[j] <- est[1]
      estp0[j] <- est[nvar1+1]
      estr[1:nvar,j] <- est[2:nvar1]
      estp[1:nvar,j] <- est[(nvar1+2):(2*nvar1)]
    }
    j <- j + 1
    if(j > d){
      stop <- 1
    } else if (indexmat[1,j] == 0) {
      stop <- 1
    }
  }
  finish_time <- Sys.time()
  total_time <- finish_time-start_time

  not_zero <- as.vector(colSums(as.matrix(indexmat!=0)))
  not_zero_index <- which(not_zero!=0)
  not_zero <- not_zero[c(not_zero_index)]

  if(sum(colSums(indexmat[-1,]))==0) {
    row.zeros <- 1
    n.all.zeros <- d
  } else if (which(colSums(indexmat) == 0)[1]==2){
    row.zeros <- d
    n.all.zeros <- which(colSums(indexmat==0) == d)[1]-1
  }  else {
    row.zeros <- which(rowSums(indexmat) == 0)[1]-1
    n.all.zeros <- which(colSums(indexmat==0) == d)[1]-1
  }

  indexmat.final <- matrix(indexmat[1:row.zeros,1:n.all.zeros], ncol=n.all.zeros)

  indexmat.final[which(indexmat.final!=0)] <- cn[as.vector(indexmat.final)]
  colnames(indexmat.final) <- paste0("Factor", c(1:ncol(indexmat.final)), sep ="")
  rownames(indexmat.final) <- paste0(c(1:nrow(indexmat.final)), sep ="")

  estr.final <- matrix(estr[1:row.zeros,1:n.all.zeros], ncol=n.all.zeros)
  colnames(estr.final) <- paste0("Factor", c(1:ncol(estr.final)), sep ="")
  rownames(estr.final) <- paste0(c(1:nrow(estr.final)), sep ="")

  estp.final <- matrix(estp[1:row.zeros,1:n.all.zeros], ncol=n.all.zeros)
  colnames(estp.final) <- paste0("Factor", c(1:ncol(estp.final)), sep ="")
  rownames(estp.final) <- paste0(c(1:nrow(estp.final)), sep ="")

  result <- list(AIC=AICmin,indexmat=indexmat.final,
                 estr0=estr0,estp0=estp0,
                 estr=estr.final,estp=estp.final,
                 timing=total_time, n=n, d=d)
  result$call <- cl
  result$model <- not_zero
  class(result) <- "dfnbt"
  result
} # dfnbt function ends...

#' @export
print.dfnbt <- function(x, digits = 4, ...){
  cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")

  if(setequal(x$model, rep(1,x$d))){message("Independent model!\n")}
  cat("This is a (",toString(paste0(x$model)),") model.\n",sep="")

  if(x$AIC == Inf){
    message(" The AIC is Inf and discrete factor analysis may not be feasible for this data.\n")
  } else {
    cat("\nAIC value is ", x$AIC, ".\n", sep="")
  }

  cat("\nFactors and variables in each factor:\n")
  print(ifelse(x$indexmat == 0, "", x$indexmat), quote = FALSE, ...)

  cat("\nEstimated value of r for the negative binomial distributed observations(s):\n")
  print(ifelse(x$indexmat == 0, "", round(x$estr, digits)), quote = FALSE, ...)

  cat("\nEstimated value of p for the negative binomial distributed observations(s):\n")
  print(ifelse(x$indexmat == 0, "", round(x$estp, digits)), quote = FALSE, ...)

  cat("\nEstimated value of r for the negative binomial distributed factor(s):\n")
  cat(round(x$estr0[which(x$estr0!=0)], digits=digits))

  cat("\n\nEstimated value of p for the negative binomial distributed factor(s):\n")
  cat(round(x$estp0[which(x$estp0!=0)], digits=digits))

  cat("\n\nTiming:\n")
  print(x$timing, digits = digits, quote = FALSE, ...)
  invisible(x)
}

Try the discFA package in your browser

Any scripts or data that you put into this service are public.

discFA documentation built on May 29, 2024, 3:11 a.m.