Nothing
# Collecting the required information
time_points <- suppressWarnings(as.numeric(gsub("([^0-9])", "",
colnames(dip1))))
tcol <- which(!is.na(time_points))
b1 <- dip1$type == "R"
tol <- 1e-9
# Hotelling's T2 statistics
l_hs <- get_T2_two(m1 = as.matrix(dip1[b1, tcol]),
m2 = as.matrix(dip1[!b1, tcol]),
signif = 0.05)
# Calling gep_by_nera()
res <- gep_by_nera(n_p = as.numeric(l_hs[["Parameters"]]["df1"]),
kk = as.numeric(l_hs[["Parameters"]]["K"]),
mean_diff = l_hs[["means"]][["mean.diff"]],
m_vc = l_hs[["S.pool"]],
ff_crit = as.numeric(l_hs[["Parameters"]]["F.crit"]),
y = rep(1, times = l_hs[["Parameters"]]["df1"] + 1),
max_trial = 100, tol = tol)
# Expected result in res[["points.on.crb"]]
# [1] NA
# Check if points lie on the confidence region bounds (CRB)
check_point_location(lpt = res, lhs = l_hs)
# Expected result in res[["points.on.crb"]]
# [1] TRUE
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.