Nothing
# Estimation of the parameters for Hotelling's two-sample T2 statistic
# (for small samples)
res1 <- get_T2_two(m1 = as.matrix(dip1[dip1$type == "R", c("t.15", "t.90")]),
m2 = as.matrix(dip1[dip1$type == "T", c("t.15", "t.90")]),
signif = 0.1)
res1$S.pool
res1$Parameters
# Results in res1$S.pool
# t.15 t.90
# t.15 3.395808 1.029870
# t.90 1.029870 4.434833
# Results in res1$Parameters
# dm df1 df2 signif K
# 1.044045e+01 2.000000e+00 9.000000e+00 1.000000e-01 1.350000e+00
# k T2 F F.crit t.crit
# 3.000000e+00 3.270089e+02 1.471540e+02 3.006452e+00 2.228139e+00
# p.F
# 1.335407e-07
# The results above correspond to the values that are shown in Tsong (1996)
# (see reference of dip1 data set) under paragraph "DATA1 data (Comparing
# the 15- and 90-minute sample time points only).
# For the second assessment shown in Tsong (1996) (see reference of dip1 data
# set) under paragraph "DATA2 data (Comparing all eight time points), the
# following results are obtained.
res2 <- get_T2_two(m1 = as.matrix(dip1[dip1$type == "R", 3:10]),
m2 = as.matrix(dip1[dip1$type == "T", 3:10]),
signif = 0.1)
res2$Parameters
# Results in res2$Parameters
# dm df1 df2 signif K
# 2.648562e+01 8.000000e+00 3.000000e+00 1.000000e-01 1.125000e-01
# k T2 F F.crit t.crit
# 3.000000e+00 2.104464e+03 7.891739e+01 5.251671e+00 3.038243e+00
# p.F
# 2.116258e-03
# In Tsong (1997) (see reference of dip7), the model-dependent approach is
# illustrated with an example data set of alpha and beta parameters obtained
# by fitting the Weibull curve function to a data set of dissolution profiles
# of three reference batches and one new batch (12 profiles per batch).
res3 <-
get_T2_two(m1 = as.matrix(dip7[dip7$type == "ref", c("alpha", "beta")]),
m2 = as.matrix(dip7[dip7$type == "test", c("alpha", "beta")]),
signif = 0.05)
res3$Parameters
# Results in res3$Parameters
# dm df1 df2 signif K
# 3.247275e+00 2.000000e+00 4.500000e+01 5.000000e-02 4.402174e+00
# k T2 F F.crit t.crit
# 9.000000e+00 9.490313e+01 4.642001e+01 3.204317e+00 2.317152e+00
# p.F
# 1.151701e-11
# In Sathe (1996) (see reference of dip8), the model-dependent approach is
# illustrated with an example data set of alpha and beta parameters obtained
# by fitting the Weibull curve function to a data set of dissolution profiles
# of one reference batch and one new batch with minor modifications and another
# new batch with major modifications (12 profiles per batch). Note that the
# assessment is performed on the (natural) logarithm scale.
res4.minor <- get_T2_two(m1 = log(as.matrix(dip8[dip8$type == "ref",
c("alpha", "beta")])),
m2 = log(as.matrix(dip8[dip8$type == "minor",
c("alpha", "beta")])),
signif = 0.1)
res4.major <- get_T2_two(m1 = log(as.matrix(dip8[dip8$type == "ref",
c("alpha", "beta")])),
m2 = log(as.matrix(dip8[dip8$type == "major",
c("alpha", "beta")])),
signif = 0.1)
res4.minor$Parameters
res4.minor$CI$Hotelling
res4.major$Parameters
res4.major$CI$Hotelling
# Expected results in res4.minor$Parameters
# dm df1 df2 signif K
# 1.462603730 2.000000000 21.000000000 0.100000000 2.863636364
# k T2 F F.crit t.crit
# 6.000000000 12.835258028 6.125918604 2.574569390 2.073873068
# p.F
# 0.008021181
# Results in res4.minor$CI$Hotelling
# LCL UCL
# alpha -0.2553037 -0.02814098
# beta -0.1190028 0.01175691
# Expected results in res4.major$Parameters
# dm df1 df2 signif K
# 4.508190e+00 2.000000e+00 2.100000e+01 5.000000e-02 2.863636e+00
# k T2 F F.crit t.crit
# 6.000000e+00 1.219427e+02 5.819992e+01 2.574569e+00 2.073873e+00
# p.F
# 2.719240e-09
# Expected results in res4.major$CI$Hotelling
# LCL UCL
# alpha -0.4864736 -0.2360966
# beta 0.1954760 0.3035340
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.