Nothing
#' @title Uniform Kernel
#'
#' @description Mathematical and statistical functions for the Uniform kernel defined by the pdf,
#' \deqn{f(x) = 1/2}
#' over the support \eqn{x \in (-1,1)}{x \epsilon (-1,1)}.
#'
#' @name UniformKernel
#' @template class_distribution
#' @template class_kernel
#' @template method_pdfsquared2Norm
#'
#' @export
UniformKernel <- R6Class("UniformKernel",
inherit = Kernel, lock_objects = F,
public = list(
name = "UniformKernel",
short_name = "Unif",
description = "Uniform Kernel",
#' @description
#' The squared 2-norm of the pdf is defined by
#' \deqn{\int_a^b (f_X(u))^2 du}
#' where X is the Distribution, \eqn{f_X} is its pdf and \eqn{a, b}
#' are the distribution support limits.
pdfSquared2Norm = function(x = 0, upper = Inf) {
xl <- length(x)
ul <- length(upper)
len <- max(xl, ul)
ret <- numeric(len)
for (i in seq(len)) {
xi <- x[ifelse(i %% xl == 0, xl, i %% xl)]
ui <- upper[ifelse(i %% ul == 0, ul, i %% ul)]
if (ui == Inf) {
if (abs(xi) >= 2) {
ret[i] <- 0
} else {
ret[i] <- (1 / 4) * (2 - (abs(xi)))
}
} else{
if (xi >= 0 & xi <= 2) {
if (ui >= 1) {
ret[i] <- 1 / 4 * (2 - xi)
}
else if (ui >= (xi - 1) & ui <= 1) {
ret[i] <- 1 / 4 * (ui - xi + 1)
}
else if (ui <= xi - 1) {
ret[i] <- 0
}
} else if (xi >= -2 & xi <= 0) {
if (ui >= (xi + 1)) {
ret[i] <- 1 / 4 * (2 + xi)
}
else if (ui >= -1 & ui <= (xi + 1)) {
ret[i] <- 1 / 4 * (ui + 1)
}
else if (ui <= -1) {
ret[i] <- 0
}
}
}
}
return(ret)
},
#' @description
#' The squared 2-norm of the cdf is defined by
#' \deqn{\int_a^b (F_X(u))^2 du}
#' where X is the Distribution, \eqn{F_X} is its pdf and \eqn{a, b}
#' are the distribution support limits.
cdfSquared2Norm = function(x = 0, upper = 0) {
xl <- length(x)
ul <- length(upper)
len <- max(xl, ul)
ret <- numeric(len)
for (i in seq(len)) {
xi <- x[ifelse(i %% xl == 0, xl, i %% xl)]
ui <- upper[ifelse(i %% ul == 0, ul, i %% ul)]
if (xi >= 0 & xi <= 2) {
if (ui <= - 1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= 1) {
ret[i] <- (xi^3 + 2 * ui^3 + 3 * ui^2 * (2 - xi) +
6 * ui * (1 - xi) - 3 * xi + 2) / 24
} else if (ui >= 1 & ui <= xi + 1) {
ret[i] <- (xi^3 + 6 * ui^2 + 12 * ui - 12 * ui * xi - 2) / 24
} else if (ui >= xi + 1) {
ret[i] <- (xi^3 - 6 * xi^2 - 12 * xi + 24 * ui - 8) / 24
}
} else if (xi >= - 2 & xi <= 0) {
if (ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= - 1) {
ret[i] <- 0
} else if (ui >= - 1 & ui <= xi + 1) {
ret[i] <- (2 * ui^3 + 3 * ui^2 * (2 - xi) +
6 * ui * (1 - xi) - 3 * xi + 2) / 24
} else if (ui >= xi + 1 & ui <= 1) {
ret[i] <- (- xi^3 + 6 * (ui^2 - xi^2) + 12 * (ui - xi) - 2) / 24
} else if (ui >= 1) {
ret[i] <- (- xi^3 - 6 * xi^2 - 12 * xi + 24 * ui - 8) / 24
}
}
else if (xi >= 2) {
if (ui <= -1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= 1) {
ret[i] <- 0
} else if (ui >= 1 & ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= xi + 1) {
ret[i] <- ui^2 / 4 + (1 / 4) * ui * (2 - 2 * xi) +
(1 / 4) * (1 - 2 * xi + xi^2)
} else if (ui >= xi + 1) {
ret[i] <- ui - xi
}
} else if (xi <= -2) {
if (ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= xi + 1) {
ret[i] <- 0
} else if (ui >= xi + 1 & ui <= -1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= 1) {
ret[i] <- 1 / 4 + ui / 2 + ui^2 / 4
} else if (ui >= 1) {
ret[i] <- ui
}
}
}
return(ret)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
return(1 / 3)
}
),
private = list(
.pdf = function(x, log = FALSE) {
C_UniformKernelPdf(x, log)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
C_UniformKernelCdf(x, lower.tail, log.p)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
C_UniformKernelQuantile(p, lower.tail, log.p)
}
)
)
.distr6$kernels <- rbind(
.distr6$kernels,
data.table::data.table(
ShortName = "Unif", ClassName = "UniformKernel",
Support = "[-1,1]", Packages = "-"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.