Nothing
#' @name Cauchy
#' @author Chijing Zeng
#' @template SDist
#' @templateVar ClassName Cauchy
#' @templateVar DistName Cauchy
#' @templateVar uses in physics and finance
#' @templateVar params location, \eqn{\alpha}, and scale, \eqn{\beta},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = 1 / (\pi\beta(1 + ((x - \alpha) / \beta)^2))}
#' @templateVar paramsupport \eqn{\alpha \epsilon R} and \eqn{\beta > 0}
#' @templateVar distsupport the Reals
#' @templateVar default location = 0, scale = 1
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_locationscale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Cauchy <- R6Class("Cauchy",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Cauchy",
short_name = "Cauchy",
description = "Cauchy Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(location = NULL, scale = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Reals$new(),
symmetry = "sym",
type = Reals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
rep(NaN, length(self$getParameterValue("location")))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
unlist(self$getParameterValue("location"))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
rep(NaN, length(self$getParameterValue("location")))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
rep(NaN, length(self$getParameterValue("location")))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
rep(NaN, length(self$getParameterValue("location")))
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
return(log(4 * pi * unlist(self$getParameterValue("scale")), base))
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
return(NaN)
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(exp((self$getParameterValue("location") * 1i * t) -
(self$getParameterValue("scale") * abs(t))))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
location <- self$getParameterValue("location")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "dcauchy",
x = x,
args = list(
location = unlist(location),
scale = unlist(scale)
),
log = log,
vec = test_list(location)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
location <- self$getParameterValue("location")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "pcauchy",
x = x,
args = list(
location = unlist(location),
scale = unlist(scale)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(location)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
location <- self$getParameterValue("location")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "qcauchy",
x = p,
args = list(
location = unlist(location),
scale = unlist(scale)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(location)
)
},
.rand = function(n) {
location <- self$getParameterValue("location")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "rcauchy",
x = n,
args = list(
location = unlist(location),
scale = unlist(scale)
),
vec = test_list(location)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Cauchy", ClassName = "Cauchy",
Type = "\u211D", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = "locscale"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.