Nothing
#' @name EmpiricalMV
#' @template SDist
#' @templateVar ClassName EmpiricalMV
#' @templateVar DistName EmpiricalMV
#' @templateVar uses in sampling such as MCMC
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{p(x) = \sum I(x = x_i) / k}
#' @templateVar paramsupport \eqn{x_i \epsilon R, i = 1,...,k}
#' @templateVar distsupport \eqn{x_1,...,x_k}
#' @templateVar default data = data.frame(1, 1)
#' @details
#' Sampling from this distribution is performed with the [sample] function with the elements given
#' as the support set and uniform probabilities. Sampling is performed with replacement, which is
#' consistent with other distributions but non-standard for Empirical distributions. Use
#' [simulateEmpiricalDistribution] to sample without replacement.
#'
#' The cdf assumes that the elements are supplied in an indexed order
#' (otherwise the results are meaningless).
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#'
#' @family discrete distributions
#' @family multivariate distributions
#'
#' @export
EmpiricalMV <- R6Class("EmpiricalMV",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "EmpiricalMV",
short_name = "EmpMV",
description = "Multivariate Empirical Probability Distribution.",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param data `[matrix]` \cr
#' Matrix-like object where each column is a vector of observed samples corresponding
#' to each variable.
#' @examples
#' EmpiricalMV$new(MultivariateNormal$new()$rand(100))
initialize = function(data = NULL, decorators = NULL) {
if (is.null(data)) data <- data.frame(1, 1)
support <- do.call(setproduct, as.Tuple(data))
data <- data.table::as.data.table(data)
private$.variates <- ncol(data)
private$.parameters <-
pset(prm("data", "universal", data, "immutable"))
super$initialize(
decorators = decorators,
support = support,
type = Reals$new()^"n"
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
as.numeric(colMeans(self$getParameterValue("data")))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
data <- self$getParameterValue("data")
n <- nrow(data)
as.numeric(apply(data, 2, function(x) var(x) * ((n - 1) / n)))
},
# optional setParameterValue
#' @description
#' Sets the value(s) of the given parameter(s).
setParameterValue = function(..., lst = NULL, error = "warn", resolveConflicts = FALSE) {
warning("Data cannot be updated after construction.")
return(NULL)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
pdf <- C_EmpiricalMVPdf(
x = x,
data = as.matrix(self$getParameterValue("data"))
)
if (log) pdf <- log(pdf)
return(pdf)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
cdf <- C_EmpiricalMVCdf(
x = x,
data = as.matrix(self$getParameterValue("data"))
)
if (!lower.tail) cdf <- 1 - cdf
if (log.p) cdf <- log(cdf)
return(cdf)
},
.rand = function(n) {
data <- as.matrix(self$getParameterValue("data"))
rand <- matrix(ncol = ncol(data), nrow = n)
for (i in seq(ncol(data))) {
rand[, i] <- sample(data[, i], n, TRUE)
}
return(rand)
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "multivariate"),
.data = data.table::data.table(),
.total = numeric(1)
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "EmpMV", ClassName = "EmpiricalMV",
Type = "\u211D", ValueSupport = "discrete",
VariateForm = "multivariate",
Package = "-", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.