Nothing
# nolint start
#' @name Exponential
#' @template SDist
#' @templateVar ClassName Exponential
#' @templateVar DistName Exponential
#' @templateVar uses to model inter-arrival times in a Poisson process and has the memoryless property
#' @templateVar params rate, \eqn{\lambda},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = \lambda exp(-x\lambda)}
#' @templateVar paramsupport \eqn{\lambda > 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar default rate = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_ratescale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Exponential <- R6Class("Exponential",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Exponential",
short_name = "Exp",
description = "Exponential Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(rate = NULL, scale = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = T),
type = PosReals$new(zero = T)
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("scale"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
numeric(length(self$getParameterValue("scale")))
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
unlist(self$getParameterValue("scale")) * log(2)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
unlist(self$getParameterValue("scale"))^2
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
rep(2, length(self$getParameterValue("scale")))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
if (excess) {
rep(6, length(self$getParameterValue("scale")))
} else {
rep(9, length(self$getParameterValue("scale")))
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
1 - log(unlist(self$getParameterValue("rate")), base)
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (t < self$getParameterValue("rate")) {
return(self$getParameterValue("rate") / (self$getParameterValue("rate") - t))
} else {
return(NaN)
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(self$getParameterValue("rate") / (self$getParameterValue("rate") - ((0 + 1i) * t)))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
rate <- self$getParameterValue("rate")
call_C_base_pdqr(
fun = "dexp",
x = x,
args = list(rate = unlist(rate)),
log = log,
vec = test_list(rate)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
rate <- self$getParameterValue("rate")
call_C_base_pdqr(
fun = "pexp",
x = x,
args = list(rate = unlist(rate)),
lower.tail = lower.tail,
log = log.p,
vec = test_list(rate)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
rate <- self$getParameterValue("rate")
call_C_base_pdqr(
fun = "qexp",
x = p,
args = list(rate = unlist(rate)),
lower.tail = lower.tail,
log = log.p,
vec = test_list(rate)
)
},
.rand = function(n) {
rate <- self$getParameterValue("rate")
call_C_base_pdqr(
fun = "rexp",
x = n,
args = list(rate = unlist(rate)),
vec = test_list(rate)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Exp", ClassName = "Exponential",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = "scale"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.