Nothing
# nolint start
#' @name FDistribution
#' @template SDist
#' @templateVar ClassName FDistribution
#' @templateVar DistName 'F'
#' @templateVar uses in ANOVA testing and is the ratio of scaled Chi-Squared distributions.
#' @templateVar params two degrees of freedom parameters, \eqn{\mu, \nu},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = \Gamma((\mu + \nu)/2) / (\Gamma(\mu/2) \Gamma(\nu/2)) (\mu/\nu)^{\mu/2} x^{\mu/2 - 1} (1 + (\mu/\nu) x)^{-(\mu + \nu)/2}}
#' @templateVar paramsupport \eqn{\mu, \nu > 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar default df1 = 1, df2 = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
FDistribution <- R6Class("FDistribution",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "FDistribution",
short_name = "F",
description = "F Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param df1 `(numeric(1))`\cr
#' First degree of freedom of the distribution defined on the positive Reals.
#' @param df2 `(numeric(1))`\cr
#' Second degree of freedom of the distribution defined on the positive Reals.
initialize = function(df1 = NULL, df2 = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = FALSE),
type = PosReals$new(zero = TRUE)
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
mean <- rep(NaN, length(df1))
mean[df2 > 2] <- df2[df2 > 2] / (df2[df2 > 2] - 2)
return(mean)
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
mode <- rep(NaN, length(df1))
mode[df1 > 2] <- ((df1[df1 > 2] - 2) * df2[df1 > 2]) / (df1[df1 > 2] * (df2[df1 > 2] + 2))
return(mode)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
var <- rep(NaN, length(df1))
var[df2 > 4] <- 2 * (df2[df2 > 4])^2 * (df1[df2 > 4] + df2[df2 > 4] - 2) /
(df1[df2 > 4] * (df2[df2 > 4] - 2)^2 * (df2[df2 > 4] - 4))
return(var)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
skew <- rep(NaN, length(df1))
skew[df2 > 6] <- ((2 * df1[df2 > 6] + df2[df2 > 6] - 2) * sqrt(8 * (df2[df2 > 6] - 4))) /
(((df2[df2 > 6] - 6) * sqrt(df1[df2 > 6] * (df1[df2 > 6] + df2[df2 > 6] - 2))))
return(skew)
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
exkurtosis <- rep(NaN, length(df1))
exkurtosis[df2 > 8] <- (12 * (df1[df2 > 8] * (5 * df2[df2 > 8] - 22) *
(df1[df2 > 8] + df2[df2 > 8] - 2) +
(df2[df2 > 8] - 4) * (df2[df2 > 8] - 2)^2)) /
(df1[df2 > 8] * (df2[df2 > 8] - 6) * (df2[df2 > 8] - 8) * (df1[df2 > 8] + df2[df2 > 8] - 2))
if (excess == TRUE) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
return(log(gamma(df1 / 2), base) + log(gamma(df2 / 2), base) -
log(gamma((df1 + df2) / 2), base) + log(df1 / df2, base) + (1 - df1 / 2)
* digamma(1 + df1 / 2) - (1 + df2 / 2) * digamma(1 + df2 / 2) +
((df1 + df2) / 2) * digamma((df1 + df2) / 2))
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
return(NaN)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$support <- if (self$getParameterValue("df1") == 1) {
prop$support <- PosReals$new(zero = FALSE)
} else {
prop$support <- PosReals$new(zero = TRUE)
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "df",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
log = log,
vec = test_list(df1)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "pf",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "qf",
x = p,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.rand = function(n) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "rf",
x = n,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
vec = test_list(df1)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "F", ClassName = "FDistribution",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.