Nothing
# nolint start
#' @name FDistributionNoncentral
#' @author Jordan Deenichin
#' @template SDist
#' @templateVar ClassName FDistributionNoncentral
#' @templateVar DistName Noncentral F
#' @templateVar uses in ANOVA testing and is the ratio of scaled Chi-Squared distributions
#' @templateVar params two degrees of freedom parameters, \eqn{\mu, \nu}, and location, \eqn{\lambda}, # nolint
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = \sum_{r=0}^{\infty} ((exp(-\lambda/2)(\lambda/2)^r)/(B(\nu/2, \mu/2+r)r!))(\mu/\nu)^{\mu/2+r}(\nu/(\nu+x\mu))^{(\mu+\nu)/2+r}x^{\mu/2-1+r}}
#' @templateVar paramsupport \eqn{\mu, \nu > 0, \lambda \ge 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar default df1 = 1, df2 = 1, location = 0
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template param_location
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
FDistributionNoncentral <- R6Class("FDistributionNoncentral",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "FDistributionNoncentral",
short_name = "FNC",
description = "Non-central F Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param df1 `(numeric(1))`\cr
#' First degree of freedom of the distribution defined on the positive Reals.
#' @param df2 `(numeric(1))`\cr
#' Second degree of freedom of the distribution defined on the positive Reals.
initialize = function(df1 = NULL, df2 = NULL, location = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = FALSE),
type = PosReals$new(zero = TRUE)
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
loc <- unlist(self$getParameterValue("location"))
mean <- rep(NaN, length(df1))
mean[df2 > 2] <- df2[df2 > 2] * (df1[df2 > 2] + loc[df2 > 2]) /
(df1[df2 > 2] * (df2[df2 > 2] - 2))
return(mean)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
loc <- unlist(self$getParameterValue("location"))
var <- rep(NaN, length(df1))
var[df2 > 4] <- 2 * (df2[df2 > 4] / df1[df2 > 4])^2 * ((df1[df2 > 4] + loc[df2 > 4])^2 +
(df1[df2 > 4] + 2 * loc[df2 > 4]) *
(df2[df2 > 4] - 2)) /
((df2[df2 > 4] - 2)^2 * (df2[df2 > 4] - 4))
return(var)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$support <- if (self$getParameterValue("df1") == 1) {
prop$support <- PosReals$new(zero = FALSE)
} else {
prop$support <- PosReals$new(zero = TRUE)
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
ncp <- self$getParameterValue("location")
call_C_base_pdqr(
fun = "df",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2),
ncp = unlist(ncp)
),
log = log,
vec = test_list(df1)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
ncp <- self$getParameterValue("location")
call_C_base_pdqr(
fun = "pf",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2),
ncp = unlist(ncp)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
ncp <- self$getParameterValue("location")
call_C_base_pdqr(
fun = "qf",
x = p,
args = list(
df1 = unlist(df1),
df2 = unlist(df2),
ncp = unlist(ncp)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.rand = function(n) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
ncp <- self$getParameterValue("location")
call_C_base_pdqr(
fun = "rf",
x = n,
args = list(
df1 = unlist(df1),
df2 = unlist(df2),
ncp = unlist(ncp)
),
vec = test_list(df1)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "FNC", ClassName = "FDistributionNoncentral",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.