Nothing
# nolint start
#' @name Frechet
#' @template SDist
#' @templateVar ClassName Frechet
#' @templateVar DistName Frechet
#' @templateVar uses as a special case of the Generalised Extreme Value distribution
#' @templateVar params shape, \eqn{\alpha}, scale, \eqn{\beta}, and minimum, \eqn{\gamma},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\alpha/\beta)((x-\gamma)/\beta)^{-1-\alpha}exp(-(x-\gamma)/\beta)^{-\alpha}}
#' @templateVar paramsupport \eqn{\alpha, \beta \epsilon R^+} and \eqn{\gamma \epsilon R}
#' @templateVar distsupport \eqn{x > \gamma}
#' @templateVar aka Inverse Weibull
#' @templateVar default shape = 1, scale = 1, minimum = 0
#' @aliases InverseWeibull
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template param_shape
#' @template param_scale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Frechet <- R6Class("Frechet",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Frechet",
short_name = "Frec",
description = "Frechet Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param minimum `(numeric(1))`\cr
#' Minimum of the distribution, defined on the Reals.
initialize = function(shape = NULL, scale = NULL, minimum = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(0, Inf, type = "()"),
type = Reals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
mean <- rep(Inf, length(shape))
mean[shape > 1] <- minimum[shape > 1] + scale[shape > 1] * gamma(1 - 1 / shape[shape > 1])
return(mean)
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
return(minimum + scale * (shape / (1 + shape))^(1 / shape)) # nolint
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
m <- unlist(self$getParameterValue("minimum"))
s <- unlist(self$getParameterValue("scale"))
a <- unlist(self$getParameterValue("shape"))
return(m + s / (log(2)^(1 / a))) # nolint
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
var <- rep(Inf, length(shape))
var[shape > 2] <- scale[shape > 2]^2 * (gamma(1 - 2 / shape[shape > 2]) -
gamma(1 - 1 / shape[shape > 2])^2)
return(var)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
skew <- rep(Inf, length(shape))
skew[shape > 3] <- (gamma(1 - 3 / shape[shape > 3]) - 3 *
gamma(1 - 2 / shape[shape > 3]) * gamma(1 - 1 / shape[shape > 3]) + 2
* gamma(1 - 1 / shape[shape > 3])^3) /
((gamma(1 - 2 / shape[shape > 3]) - gamma(1 - 1 / shape[shape > 3])^2)^(3 / 2)) # nolint
return(skew)
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
kur <- rep(Inf, length(shape))
kur[shape > 4] <- (gamma(1 - 4 / shape[shape > 4]) - 4 * gamma(1 - 3 / shape[shape > 4]) *
gamma(1 - 1 / shape[shape > 4]) + 3 * gamma(1 - 2 / shape[shape > 4])^2) /
((gamma(1 - 2 / shape[shape > 4]) - gamma(1 - 1 / shape[shape > 4])^2)^2)
if (excess) {
return(kur - 6)
} else {
return(kur - 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
shape <- unlist(self$getParameterValue("shape"))
minimum <- unlist(self$getParameterValue("minimum"))
scale <- unlist(self$getParameterValue("scale"))
return(1 - digamma(1) / shape - digamma(1) + log(scale / shape, base))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$support <- Interval$new(self$getParameterValue("minimum"),
Inf, type = "()")
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::dfrechet,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dfrechet(
x,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::pfrechet,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(
q = x,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::pfrechet(
x,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::qfrechet,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(
p = p,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::qfrechet(
p,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::rfrechet,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rfrechet(
n,
lambda = self$getParameterValue("shape"),
mu = self$getParameterValue("minimum"),
sigma = self$getParameterValue("scale")
)
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Frec", ClassName = "Frechet",
Type = "\u211D", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "extraDistr", Tags = "locscale"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.