Nothing
# nolint start
#' @name InverseGamma
#' @template SDist
#' @templateVar ClassName InverseGamma
#' @templateVar DistName Inverse Gamma
#' @templateVar uses in Bayesian statistics as the posterior distribution from the unknown variance in a Normal distribution
#' @templateVar params shape, \eqn{\alpha}, and scale, \eqn{\beta},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\beta^\alpha)/\Gamma(\alpha)x^{-\alpha-1}exp(-\beta/x)}
#' @templateVar paramsupport \eqn{\alpha, \beta > 0}, where \eqn{\Gamma} is the gamma function
#' @templateVar distsupport the Positive Reals
#' @templateVar default shape = 1, scale = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_shape
#' @template param_scale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
InverseGamma <- R6Class("InverseGamma",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "InverseGamma",
short_name = "InvGamma",
description = "Inverse Gamma Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(shape = NULL, scale = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(),
type = PosReals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
shape <- unlist(self$getParameterValue("shape"))
scale <- unlist(self$getParameterValue("scale"))
mean <- rep(NaN, length(shape))
mean[shape > 1] <- scale[shape > 1] / (shape[shape > 1] - 1)
return(mean)
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
unlist(self$getParameterValue("scale")) / (unlist(self$getParameterValue("shape")) + 1)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
shape <- unlist(self$getParameterValue("shape"))
scale <- unlist(self$getParameterValue("scale"))
var <- rep(NaN, length(shape))
var[shape > 2] <- scale[shape > 2]^2 / ((shape[shape > 2] - 1)^2 * (shape[shape > 2] - 2))
return(var)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
shape <- unlist(self$getParameterValue("shape"))
skew <- rep(NaN, length(shape))
skew[shape > 3] <- (4 * sqrt(shape[shape > 3] - 2)) / (shape[shape > 3] - 3)
return(skew)
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
shape <- unlist(self$getParameterValue("shape"))
kur <- rep(NaN, length(shape))
kur[shape > 4] <- (6 * (5 * shape[shape > 4] - 11)) /
((shape[shape > 4] - 3) * (shape[shape > 4] - 4))
if (excess) {
return(kur)
} else {
return(kur + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
shape <- unlist(self$getParameterValue("shape"))
scale <- unlist(self$getParameterValue("scale"))
return(shape + log(scale * gamma(shape), base) - (1 + shape) * digamma(shape))
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
return(NaN)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::dinvgamma,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dinvgamma(
x,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::pinvgamma,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
MoreArgs = list(
q = x,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::pinvgamma(
x,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::qinvgamma,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
MoreArgs = list(
p = p,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::qinvgamma(
p,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(
extraDistr::rinvgamma,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rinvgamma(
n,
alpha = self$getParameterValue("shape"),
beta = self$getParameterValue("scale")
)
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "InvGamma", ClassName = "InverseGamma",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "extraDistr", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.