Nothing
#' @name Laplace
#' @template SDist
#' @templateVar ClassName Laplace
#' @templateVar DistName Laplace
#' @templateVar uses in signal processing and finance
#' @templateVar params mean, \eqn{\mu}, and scale, \eqn{\beta},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = exp(-|x-\mu|/\beta)/(2\beta)}
#' @templateVar paramsupport \eqn{\mu \epsilon R} and \eqn{\beta > 0}
#' @templateVar distsupport the Reals
#' @templateVar default mean = 0, scale = 1
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_scale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Laplace <- R6Class("Laplace",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Laplace",
short_name = "Lap",
description = "Laplace Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param mean `(numeric(1))`\cr
#' Mean of the distribution, defined on the Reals.
#' @param var `(numeric(1))`\cr
#' Variance of the distribution, defined on the positive Reals. `var = 2*scale^2`.
#' If `var` is provided then `scale` is ignored.
initialize = function(mean = NULL, scale = NULL, var = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Reals$new(),
symmetry = "sym",
type = Reals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("mean"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
unlist(self$getParameterValue("mean"))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
unlist(self$getParameterValue("var"))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
numeric(length(self$getParameterValue("var")))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
if (excess) {
rep(3, length(self$getParameterValue("var")))
} else {
rep(6, length(self$getParameterValue("var")))
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
log(2 * exp(1) * unlist(self$getParameterValue("scale")), base)
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (abs(t) < 1 / self$getParameterValue("scale")) {
return(exp(self$getParameterValue("mean") * t) /
(1 - self$getParameterValue("scale")^2 * t^2))
} else {
return(NaN)
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(exp(self$getParameterValue("mean") * t * 1i) /
(1 + self$getParameterValue("scale")^2 * t^2))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::dlaplace,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dlaplace(x,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::plaplace,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::plaplace(x,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::qlaplace,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(p = p, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::qlaplace(p,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::rlaplace,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rlaplace(n,
mu = self$getParameterValue("mean"),
sigma = self$getParameterValue("scale")
)
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Lap", ClassName = "Laplace",
Type = "\u211D", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "extraDistr", Tags = "locscale"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.