Nothing
# nolint start
#' @name Lognormal
#' @template SDist
#' @templateVar ClassName Lognormal
#' @templateVar DistName Log-Normal
#' @templateVar uses to model many natural phenomena as a result of growth driven by small percentage changes
#' @templateVar params logmean, \eqn{\mu}, and logvar, \eqn{\sigma},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{exp(-(log(x)-\mu)^2/2\sigma^2)/(x\sigma\sqrt(2\pi))}
#' @templateVar paramsupport \eqn{\mu \epsilon R} and \eqn{\sigma > 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar aka Log-Gaussian
#' @aliases Loggaussian
#' @templateVar default meanlog = 0, varlog = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Lognormal <- R6Class("Lognormal",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Lognormal",
short_name = "Lnorm",
description = "Lognormal Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param meanlog `(numeric(1))`\cr
#' Mean of the distribution on the log scale, defined on the Reals.
#' @param varlog `(numeric(1))`\cr
#' Variance of the distribution on the log scale, defined on the positive Reals.
#' @param sdlog `(numeric(1))`\cr
#' Standard deviation of the distribution on the log scale, defined on the positive Reals.
#' \deqn{sdlog = varlog^2}. If `preclog` missing and `sdlog` given then all other parameters
#' except `meanlog` are ignored.
#' @param preclog `(numeric(1))`\cr
#' Precision of the distribution on the log scale, defined on the positive Reals.
#' \deqn{preclog = 1/varlog}. If given then all other parameters except `meanlog` are ignored.
#' @param mean `(numeric(1))`\cr
#' Mean of the distribution on the natural scale, defined on the positive Reals.
#' @param var `(numeric(1))`\cr
#' Variance of the distribution on the natural scale, defined on the positive Reals.
#' \deqn{var = (exp(var) - 1)) * exp(2 * meanlog + varlog)}
#' @param sd `(numeric(1))`\cr
#' Standard deviation of the distribution on the natural scale, defined on the positive Reals.
#' \deqn{sd = var^2}. If `prec` missing and `sd` given then all other parameters except
#' `mean` are ignored.
#' @param prec `(numeric(1))`\cr
#' Precision of the distribution on the natural scale, defined on the Reals.
#' \deqn{prec = 1/var}. If given then all other parameters except `mean` are ignored.
#' @examples
#' Lognormal$new(var = 2, mean = 1)
#' Lognormal$new(meanlog = 2, preclog = 5)
initialize = function(meanlog = NULL, varlog = NULL, sdlog = NULL, preclog = NULL,
mean = NULL, var = NULL, sd = NULL, prec = NULL,
decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(),
type = PosReals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("mean"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
#' @param ... Unused.
mode = function(which = "all") {
exp(unlist(self$getParameterValue("meanlog")) - unlist(self$getParameterValue("varlog")))
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
exp(unlist(self$getParameterValue("meanlog")))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
unlist(self$getParameterValue("var"))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
varlog <- unlist(self$getParameterValue("varlog"))
return(sqrt(exp(varlog) - 1) * (exp(varlog) + 2))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
varlog <- unlist(self$getParameterValue("varlog"))
if (excess) {
return((exp(4 * varlog) + 2 * exp(3 * varlog) + 3 * exp(2 * varlog) - 6))
} else {
return((exp(4 * varlog) + 2 * exp(3 * varlog) + 3 * exp(2 * varlog) - 3))
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
log(sqrt(2 * pi) * unlist(self$getParameterValue("sdlog")) *
exp(unlist(self$getParameterValue("meanlog")) + 0.5), base)
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
return(NaN)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
meanlog <- self$getParameterValue("meanlog")
sdlog <- self$getParameterValue("sdlog")
call_C_base_pdqr(
fun = "dlnorm",
x = x,
args = list(
meanlog = unlist(meanlog),
sdlog = unlist(sdlog)
),
log = log,
vec = test_list(meanlog)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
meanlog <- self$getParameterValue("meanlog")
sdlog <- self$getParameterValue("sdlog")
call_C_base_pdqr(
fun = "plnorm",
x = x,
args = list(
meanlog = unlist(meanlog),
sdlog = unlist(sdlog)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(meanlog)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
meanlog <- self$getParameterValue("meanlog")
sdlog <- self$getParameterValue("sdlog")
call_C_base_pdqr(
fun = "qlnorm",
x = p,
args = list(
meanlog = unlist(meanlog),
sdlog = unlist(sdlog)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(meanlog)
)
},
.rand = function(n) {
meanlog <- self$getParameterValue("meanlog")
sdlog <- self$getParameterValue("sdlog")
call_C_base_pdqr(
fun = "rlnorm",
x = n,
args = list(
meanlog = unlist(meanlog),
sdlog = unlist(sdlog)
),
vec = test_list(meanlog)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Lnorm", ClassName = "Lognormal",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.