Nothing
# nolint start
#' @name Uniform
#' @author Yumi Zhou
#' @template SDist
#' @templateVar ClassName Uniform
#' @templateVar DistName Uniform
#' @templateVar uses to model continuous events occurring with equal probability, as an uninformed prior in Bayesian modelling, and for inverse transform sampling
#' @templateVar params lower, \eqn{a}, and upper, \eqn{b}, limits
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = 1/(b-a)}
#' @templateVar paramsupport \eqn{-\infty < a < b < \infty}
#' @templateVar distsupport \eqn{[a, b]}
#' @templateVar default lower = 0, upper = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template param_lower
#' @template param_upper
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Uniform <- R6Class("Uniform",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Uniform",
short_name = "Unif",
description = "Uniform Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(lower = NULL, upper = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(0, 1),
symmetry = "sym",
type = Reals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
(unlist(self$getParameterValue("lower")) + unlist(self$getParameterValue("upper"))) / 2
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
rep(NaN, length(self$getParameterValue("lower")))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
((unlist(self$getParameterValue("upper")) - unlist(self$getParameterValue("lower")))^2) / 12
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
numeric(length(self$getParameterValue("lower")))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
if (excess) {
return(rep(-1.2, length(self$getParameterValue("lower"))))
} else {
return(rep(1.8, length(self$getParameterValue("lower"))))
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
log(unlist(self$getParameterValue("upper")) - unlist(self$getParameterValue("lower")), base)
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (t == 0) {
return(1)
} else {
return((exp(self$getParameterValue("upper") * t) -
exp(self$getParameterValue("lower") * t)) /
(t * (self$getParameterValue("upper") - self$getParameterValue("lower"))))
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
if (t == 0) {
return(1)
} else {
return((exp(self$getParameterValue("upper") * t * 1i) -
exp(self$getParameterValue("lower") * t * 1i)) /
(t * 1i * (self$getParameterValue("upper") - self$getParameterValue("lower"))))
}
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$support <- Interval$new(
self$getParameterValue("lower"),
self$getParameterValue("upper")
)
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
min <- self$getParameterValue("lower")
max <- self$getParameterValue("upper")
call_C_base_pdqr(
fun = "dunif",
x = x,
args = list(
min = unlist(min),
max = unlist(max)
),
log = log,
vec = test_list(min)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
min <- self$getParameterValue("lower")
max <- self$getParameterValue("upper")
call_C_base_pdqr(
fun = "punif",
x = x,
args = list(
min = unlist(min),
max = unlist(max)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(min)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
min <- self$getParameterValue("lower")
max <- self$getParameterValue("upper")
call_C_base_pdqr(
fun = "qunif",
x = p,
args = list(
min = unlist(min),
max = unlist(max)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(min)
)
},
.rand = function(n) {
min <- self$getParameterValue("lower")
max <- self$getParameterValue("upper")
call_C_base_pdqr(
fun = "runif",
x = n,
args = list(
min = unlist(min),
max = unlist(max)
),
vec = test_list(min)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Unif", ClassName = "Uniform",
Type = "\u211D", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = "limits"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.