Nothing
#' @name Weibull
#' @template SDist
#' @templateVar ClassName Weibull
#' @templateVar DistName Weibull
#' @templateVar uses in survival analysis as it satisfies both PH and AFT requirements
#' @templateVar params shape, \eqn{\alpha}, and scale, \eqn{\beta},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\alpha/\beta)(x/\beta)^{\alpha-1}exp(-x/\beta)^\alpha}
#' @templateVar paramsupport \eqn{\alpha, \beta > 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar default shape = 1, scale = 1
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template param_shape
#' @template param_scale
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Weibull <- R6Class("Weibull",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Weibull",
short_name = "Weibull",
description = "Weibull Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param altscale `(numeric(1))`\cr
#' Alternative scale parameter, if given then `scale` is ignored.
#' `altscale = scale^-shape`.
initialize = function(shape = NULL, scale = NULL, altscale = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = T),
type = PosReals$new(zero = T)
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("scale")) *
gamma(1 + 1 / unlist(self$getParameterValue("shape")))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
mode <- numeric(length(scale))
mode[shape > 1] <- scale[shape > 1] *
((shape[shape > 1] - 1) / shape[shape > 1])^(1 / shape[shape > 1]) # nolint
return(mode)
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
unlist(self$getParameterValue("scale")) *
(log(2)^(1 / unlist(self$getParameterValue("shape")))) # nolint
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(scale^2 * (gamma(1 + 2 / shape) - gamma(1 + 1 / shape)^2))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
mu <- self$mean()
sigma <- self$stdev()
return(((gamma(1 + 3 / shape) * (scale^3)) - (3 * mu * sigma^2) - (mu^3)) / (sigma^3))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
skew <- self$skewness()
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
mu <- self$mean()
sigma <- self$stdev()
kur <- (((scale^4) * gamma(1 + 4 / shape)) - (4 * skew * (sigma^3) * mu) -
(6 * (sigma^2) * (mu^2)) - (mu^4)) / (sigma^4)
if (excess) {
return(kur - 3)
} else {
return(kur)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(-digamma(1) * (1 - 1 / shape) + log(scale / shape, base) + 1)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "dweibull",
x = x,
args = list(
shape = unlist(shape),
scale = unlist(scale)
),
log = log,
vec = test_list(shape)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "pweibull",
x = x,
args = list(
shape = unlist(shape),
scale = unlist(scale)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(shape)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "qweibull",
x = p,
args = list(
shape = unlist(shape),
scale = unlist(scale)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(shape)
)
},
.rand = function(n) {
shape <- self$getParameterValue("shape")
scale <- self$getParameterValue("scale")
call_C_base_pdqr(
fun = "rweibull",
x = n,
args = list(
shape = unlist(shape),
scale = unlist(scale)
),
vec = test_list(shape)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Weibull", ClassName = "Weibull",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.